Руководство по самолетовождению

libcats.org

Главная

Обложка книги Руководство по самолётовождению. [1678]

Руководство по самолётовождению. [1678]

Скачать книгу бесплатно (djvu, 9.33 Mb)


Читать «Руководство по самолётовождению. [1678]»

Популярные книги за неделю:

#1

Ф.И.Бурдейный, Н.В.Казанский. Карманный справочник радиолюбителя-коротковолновика (1959, DjVu)

440 Kb

#2

Я.Войцеховский. Радиоэлектронные игрушки (1977, djvu)

13.76 Mb

#3

Подготовка саперов, подразделений специального назначения по разминированию

Категория: Научно-популярная литература (разное)

1.49 Mb

#4

128 советов начинающему программисту

Очков В.Ф., Пухначев Ю.В.

Категория: computers, computers, prog

8.91 Mb

#5

Английский язык в картинках

I.A. Richards; Christine M. Gibson

Категория: Иностранные языки

5.77 Mb

#6

Красота в изгнании. Королевы подиума

Александр Васильев

Категория: Исторические

21.01 Mb

#7

Ограждение участка. Ограды. Заборы. Калитки. Ворота

В.И.Рыженко

Категория: Строительство

1.23 Mb

#8

Эти загадочные зеркала

В. Правдивцев

Категория: Религия. Эзотерика

88.19 Mb

#9

Самоделки школьника

Тарасов Б.В.

Категория: science, science, technical, hobby, oddjob

41.91 Mb

#10

Наука и жизнь.Маленькие хитрости

Категория: E_Engineering, EM_Mechanics of elastic materials

3.50 Mb

Только что пользователи скачали эти книги:

#1

М.А.Григорьев. Очистка масла и топлива в автотракторных двигателях (djvu)

4.09 Mb

#2

Ю.Б.Свиридов, Л.В.Малявинский. Топливо и топливоподача автотракторных дизелей (1979, djvu)

3.46 Mb

#3

Г.А.Терентьев, и другие. Моторные топлива из альтернативных сырьевых ресурсов (djvu)

2.17 Mb

#4

Журнал. Финансы и кредит

Категория: Новые поступления

1.25 Mb

#5

Радиоматериалы и радиокомпоненты

Никулин Н.В., Назаров А.С.

11.27 Mb

#6

Как покупать акции

Л.Энджел, Б.Бойд.

Категория: Economics

1.38 Mb

#7

Элементарная математика. Чать 2. Геометрия

Борель Э.

Категория: Математика

8.50 Mb

#8

Топливо и эффективность его использования

Равич М.Б.

8.82 Mb

#9

Wireless Home Networking for Dummies

Daniel D. Briere, Pat Hurley, Edward Ferris

41.19 Mb

#10

Школа гри на бандурі

Опришко М.

69.61 Mb

М. А. ЧЕРНЫЙ, В. И.
КОРАБЛИН

Самолетовождение

Утверждено

УУЗ МГА СССР в
качестве учебного пособия для летных
училищ и школ гражданской авиации

Москва «Транспорт»
1973

УДК 629.656.7.052.001(075.3)

Самолетовождение.
Черный
М. А., Кораблин В. И. Изд-во «Транспорт»,
1973 г., 368 с.

В книге рассматриваются
основные вопросы теории и практики
само­летовождения с использованием
геотехнических и радиотехнических
средств, основы авиационной картографии,
навигационные элементы по­лета.

Большое внимание
уделено подготовке, выполнению и
обеспечению безопасности полетов по
трассам, а также практическому
использованию средств самолетовождения.
Кроме того, рассмотрены вопросы теории
де­виации магнитных компасов и
радиодевиации, порядок выполнения
девиационных и радиодевиационных работ,
даны основные рекомендации по ведению
визуальной ориентировки и особенностям
самолетовождения в особых условиях
полета и при .заходе на посадку по
приборам.

Основные обозначения,
применяемые в самолетовождении, даны
по ГОСТ 1075-41 и НШС ГА-70.

Книга предназначена
в качестве учебного пособия для курсантов
и слушателей летных училищ и школ
гражданской авиации. Она может быть
использована пилотами, штурманами и
диспетчерами производственных
подразделений гражданской авиации и
слушателями учебно-тренировочных
отрядов.

Рис. 217, табл. 25.

Введение
и главы 1, 2, 5, 6, 8, 10, II,
17, 18, 19, 20, 21, 23 и 24 написа­ны М. А. Черным,
главы 3, 4, 7, 9, 12, 13, 14, 15, 16, 22 и 25 —В. И.
Кораблиным.

3186-074

Ч______________74
73

049(01
)-73

©
Издательство
«ТРАНСПОРТ» 1973 г.

Михаил Александрович Черный,

Василий Иванович Кораблин

Самолетовождение

Редакторы
И.
М. Медведев, В. А. Шулепов

Техн.
редактор Т.
А. Гусева
Корректоры:
В.
Я. Кинареевская
и
С.
Н. Пафомова

Сдано
в набор 19/ХП 1972 г. Подписано в печать
2/VII
1973 г. Формат бумаги 60Х90 1/16
№ 2. Печ. л. 23. Уч.-изд. л. 23,89. Тираж 25000.
Зак. тип. 157.

Цена 90 коп. Изд. №
1—1—2/17 № 4026 Изд-во «Транспорт», Москва,
Басманный туп., 6а.

Типография
издательства «Волжская коммуна». г.
Куйбышев, пр. Карла Маркса, 201.

Введение

Самолетовождение
— это наука о точном, надежном и безопасном
вождении воздушных судов из одной точки
земной поверхности в другую.

Под самолетовождением
понимается также комплекс действий
экипажа са­молета и работников службы
движения, направленных на обеспечение
безопас­ности, наибольшей точности
выполнения полетов по установленным
трассам (маршрутам) и прибытия в пункт
назначения в заданное время.

Основными задачами
экипажа самолета гражданской авиации
при осуществ­лении самолетовождения
являются:

1. Точное выполнение
полета по установленной трассе
(маршруту).

2. Определение
навигационных элементов, необходимых
для выполнения по­лета по установленному
маршруту или поставленной специальной
задачи (фото­графирование, сбрасывание
груза и др.).

3. Обеспечение
прибытия самолета к пункту назначения
и выполнение по­садки на аэродроме
в заданное время.

4. Обеспечение
безопасности полета.

Для решения указанных
задач экипаж использует современные
технические средства самолетовождения,
которые подразделяются по месту
расположения, по характеру использования
и по принципу действия.

По месту расположения
технические средства делятся на
самолетные (бортовые) и наземные, а по
характеру использования — на автоном­ные
и неавтономные. Автономными называются
такие средства, применение которых не
требует специального наземного
оборудования. Неавтономны­ми называются
средства, которые выдают информацию на
основе их взаимодей­ствия с наземными
устройствами.

По принципу действия
технические средства самолетовождения
делятся на четыре группы:

1. Геотехнические
средства самолетовождения, основанные
на измере­нии различных параметров
естественных (геофизических) полей
Земли. К этой группе относятся магнитные
компасы, барометрические высотомеры,
указатели воздушной скорости, термометры
наружного воздуха, часы, гирополукомпасы,
дистанционные гиромагнитные и
гироиндукционные компасы, курсовые
системы, авиагоризонты, указатели
поворота, оптические визиры, навигационные
индика­торы, инерциальные системы и
др. Большинство из этих средств
устанавливает­ся на всех самолетах
и используется в любом полете; они
применяются также при пользовании
другими техническими средствами
самолетовождения.

2. Радиотехнические
средства самолетовождения, основанные
на из­мерении параметров
электромагнитных полей, излучаемых
специальными уст­ройствами,
находящимися на борту самолета или на
земле. К ним относятся: са­молетные
радиокомпасы и связные радиостанции,
радиовысотомеры, самолетные радиолокационные
станции, доплеровские измерители угла
сноса и путевой ско­рости, наземные
радиопеленгаторы, приводные и
радиовещательные станции, ра­диомаяки,
радиомаркеры и наземные радиолокаторы.

Самолетное
радионавигационное оборудование и
наземные радиотехнические устройства
образуют системы самолетовождения. По
дальности дей­ствия последние делятся
на системы дальней навигации (свыше
1000 км),
ближ­ней
навигации до 1000 и системы посадки
самолетов.

Радиотехнические
средства широко применяются при
выполнении полетов на больших высотах,
над морем, безориентирной местностью,
в сложных метео­рологических условиях
и ночью, а также при заходе на посадку.

3. Астрономические
средства самолетовождения, основанные
на ис­пользовании небесных светил.
К этой группе средств относятся
астрономические компасы, авиационные
секстанты и астрономические ориентаторы.

Преимуществом
астрономических средств является их
автономность, помехо­защищенность и
независимость точности их работы ни от
дальности, ни от про­должительности
полета. Они могут применяться в любое
время суток и в любом месте Земного шара
для выдерживания направления полета и
определения ме­стонахождения самолета.

4. Светотехнические
средства самолетовождения,
основанные на использовании бортовых
или наземных источников света. К этой
группе средств относятся светомаяки,
прожекторы, огни посадочных систем,
пиротехнические (дымовые шашки,
пирофакелы и др.), ориентирные бомбы и
знаки. Они облег­чают ведение
ориентировки и посадку самолетов в
сложных метеорологических условиях и
ночью.

Кроме рассмотренных
технических средств, для самолетовождения
экипаж использует полетные и бортовые
карты, штурманские счетно-измерительные
ин­струменты, различные графики и
таблицы.

Современные самолеты
оснащены такими техническими средствами
самоле­товождения, которые обеспечивают
выполнение полетов в различное время
су­ток, над любой местностью и в любых
метеорологических условиях.

В настоящее время
средства самолетовождения развиваются
по пути их автоматизации с максимально
возможным освобождением экипажа от
различ­ных операций и штурманских
расчетов.

Разнообразные
технические средства самолетовождения,
имеющиеся в рас­поряжении экипажей
самолетов гражданской авиации, при
умелом их исполь­зовании позволяют
выполнять полеты точно по заданному
маршруту и обеспе­чивать прибытие
самолета в пункт назначения в заданное
время.

Основой
успешного самолетовождения является
комплексное
применение
технических средств, которое заключается
в том, что самолетовождение осуществ­ляется
с помощью не одного какого-либо средства,
а нескольких. При этом ре­зультаты
навигационных определений, полученные
с помощью одних средств, уточняются с
помощью других средств. Такое дублирование
исключает возмож­ность допущения
грубых ошибок, повышает точность и
надежность самолетовож­дения.

Для решения задач
самолетовождения штурман должен выбирать
такое сочетание средств из имеющихся
в его распоряжении, которое в данной
навига­ционной обстановке обеспечит
наибольшую точность и безопасность
полета.

Для правильного
решения вопросов комплексного применения
технических средств самолетовождения
необходимо знание принципов работы тех
или иных средств, их возможностей и
способов использования для решения
различных навигационных задач.

Авиационная
техника и технические средства
самолетовождения непрерыв­но
развиваются. Современные самолеты
оснащаются автоматизированными
на­вигационными комплексами, значительно
повышающими точность, надежность и
безопасность самолетовождения. Широкое
применение получают системы для
автоматического самолетовождения по
маршруту и для автоматического захо­де
на посадку.

Для эксплуатации
современных самолетов и самолетов
ближайшего буду­щего нужны
высококвалифицированные пилоты и
штурманы, глубоко знающие теорию и в
совершенстве владеющие практикой
самолетовождения.

ОСНОВЫ

Соседние файлы в предмете Применение авиации

  • #

    10.07.2022121.44 Кб3Лозик П.М., 1979 — Противовоздушная оборона сухопутных войск.chm

  • #
  • #
  • #
  • #
  • #
  • #

М. А. ЧЕРНЫЙ, В. И. КОРАБЛИН

САМОЛЕТОВОЖДЕНИЕ

Утверждено

УУЗ МГА СССР в качестве учебного пособия для летных училищ и школ гражданской авиации


Москва «Транспорт» 1973

УДК 629.656.7.052.001(075.3)

Самолетовождение. Черный М. А., Кораблин В. И. Изд-во «Транспорт», 1973 г., 368 с.

В книге рассматриваются основные вопросы теории и практики само­летовождения с использованием геотехнических и радиотехнических средств, основы авиационной картографии, навигационные элементы по­лета.

Большое внимание уделено подготовке, выполнению и обеспечению безопасности полетов по трассам, а также практическому использованию средств самолетовождения. Кроме того, рассмотрены вопросы теории де­виации магнитных компасов и радиодевиации, порядок выполнения девиационных и радиодевиационных работ, даны основные рекомендации по ведению визуальной ориентировки и особенностям самолетовождения в особых условиях полета и при .заходе на посадку по приборам.

Основные обозначения, применяемые в самолетовождении, даны по ГОСТ 1075-41 и НШС ГА-70.

Книга предназначена в качестве учебного пособия для курсантов и слушателей летных училищ и школ гражданской авиации. Она может быть использована пилотами, штурманами и диспетчерами производственных подразделений гражданской авиации и слушателями учебно-тренировочных отрядов.

Рис. 217, табл. 25.

Введение и главы 1, 2, 5, 6, 8, 10, II, 17, 18, 19, 20, 21, 23 и 24 написа­ны М. А. Черным, главы 3, 4, 7, 9, 12, 13, 14, 15, 16, 22 и 25 —В. И. Кораблиным.
3186-074

Ч______________74 73

049(01 )-73

© Издательство «ТРАНСПОРТ» 1973 г.
Михаил Александрович Черный,

Василий Иванович Кораблин
САМОЛЕТОВОЖДЕНИЕ
Редакторы И. М. Медведев, В. А. Шулепов

Техн. редактор Т. А. Гусева Корректоры: В. Я. Кинареевская и С. Н. Пафомова

Сдано в набор 19/ХП 1972 г. Подписано в печать 2/VII 1973 г. Формат бумаги 60Х90 1/16 № 2. Печ. л. 23. Уч.-изд. л. 23,89. Тираж 25000. Зак. тип. 157.

Цена 90 коп. Изд. № 1—1—2/17 № 4026 Изд-во «Транспорт», Москва, Басманный туп., 6а.

Типография издательства «Волжская коммуна». г. Куйбышев, пр. Карла Маркса, 201.

ВВЕДЕНИЕ
Самолетовождение — это наука о точном, надежном и безопасном вождении воздушных судов из одной точки земной поверхности в другую.

Под самолетовождением понимается также комплекс действий экипажа са­молета и работников службы движения, направленных на обеспечение безопас­ности, наибольшей точности выполнения полетов по установленным трассам (маршрутам) и прибытия в пункт назначения в заданное время.

Основными задачами экипажа самолета гражданской авиации при осуществ­лении самолетовождения являются:

1. Точное выполнение полета по установленной трассе (маршруту).

2. Определение навигационных элементов, необходимых для выполнения по­лета по установленному маршруту или поставленной специальной задачи (фото­графирование, сбрасывание груза и др.).

3. Обеспечение прибытия самолета к пункту назначения и выполнение по­садки на аэродроме в заданное время.

4. Обеспечение безопасности полета.

Для решения указанных задач экипаж использует современные технические средства самолетовождения, которые подразделяются по месту расположения, по характеру использования и по принципу действия.

По месту расположения технические средства делятся на самолетные (бортовые) и наземные, а по характеру использования — на автоном­ные и неавтономные. Автономными называются такие средства, применение которых не требует специального наземного оборудования. Неавтономны­ми называются средства, которые выдают информацию на основе их взаимодей­ствия с наземными устройствами.

По принципу действия технические средства самолетовождения делятся на четыре группы:

1. Геотехнические средства самолетовождения, основанные на измере­нии различных параметров естественных (геофизических) полей Земли. К этой группе относятся магнитные компасы, барометрические высотомеры, указатели воздушной скорости, термометры наружного воздуха, часы, гирополукомпасы, дистанционные гиромагнитные и гироиндукционные компасы, курсовые системы, авиагоризонты, указатели поворота, оптические визиры, навигационные индика­торы, инерциальные системы и др. Большинство из этих средств устанавливает­ся на всех самолетах и используется в любом полете; они применяются также при пользовании другими техническими средствами самолетовождения.

2. Радиотехнические средства самолетовождения, основанные на из­мерении параметров электромагнитных полей, излучаемых специальными уст­ройствами, находящимися на борту самолета или на земле. К ним относятся: са­молетные радиокомпасы и связные радиостанции, радиовысотомеры, самолетные радиолокационные станции, доплеровские измерители угла сноса и путевой ско­рости, наземные радиопеленгаторы, приводные и радиовещательные станции, ра­диомаяки, радиомаркеры и наземные радиолокаторы.

Самолетное радионавигационное оборудование и наземные радиотехнические устройства образуют системы самолетовождения. По дальности дей­ствия последние делятся на системы дальней навигации (свыше 1000 км), ближ­ней навигации до 1000 и системы посадки самолетов.

Радиотехнические средства широко применяются при выполнении полетов на больших высотах, над морем, безориентирной местностью, в сложных метео­рологических условиях и ночью, а также при заходе на посадку.

3. Астрономические средства самолетовождения, основанные на ис­пользовании небесных светил. К этой группе средств относятся астрономические компасы, авиационные секстанты и астрономические ориентаторы.

Преимуществом астрономических средств является их автономность, помехо­защищенность и независимость точности их работы ни от дальности, ни от про­должительности полета. Они могут применяться в любое время суток и в любом месте Земного шара для выдерживания направления полета и определения ме­стонахождения самолета.

4. Светотехнические средства самолетовождения, основанные на использовании бортовых или наземных источников света. К этой группе средств относятся светомаяки, прожекторы, огни посадочных систем, пиротехнические (дымовые шашки, пирофакелы и др.), ориентирные бомбы и знаки. Они облег­чают ведение ориентировки и посадку самолетов в сложных метеорологических условиях и ночью.

Кроме рассмотренных технических средств, для самолетовождения экипаж использует полетные и бортовые карты, штурманские счетно-измерительные ин­струменты, различные графики и таблицы.

Современные самолеты оснащены такими техническими средствами самоле­товождения, которые обеспечивают выполнение полетов в различное время су­ток, над любой местностью и в любых метеорологических условиях.

В настоящее время средства самолетовождения развиваются по пути их автоматизации с максимально возможным освобождением экипажа от различ­ных операций и штурманских расчетов.

Разнообразные технические средства самолетовождения, имеющиеся в рас­поряжении экипажей самолетов гражданской авиации, при умелом их исполь­зовании позволяют выполнять полеты точно по заданному маршруту и обеспе­чивать прибытие самолета в пункт назначения в заданное время.

Основой успешного самолетовождения является комплексное применение технических средств, которое заключается в том, что самолетовождение осуществ­ляется с помощью не одного какого-либо средства, а нескольких. При этом ре­зультаты навигационных определений, полученные с помощью одних средств, уточняются с помощью других средств. Такое дублирование исключает возмож­ность допущения грубых ошибок, повышает точность и надежность самолетовож­дения.

Для решения задач самолетовождения штурман должен выбирать такое сочетание средств из имеющихся в его распоряжении, которое в данной навига­ционной обстановке обеспечит наибольшую точность и безопасность полета.

Для правильного решения вопросов комплексного применения технических средств самолетовождения необходимо знание принципов работы тех или иных средств, их возможностей и способов использования для решения различных навигационных задач.

Авиационная техника и технические средства самолетовождения непрерыв­но развиваются. Современные самолеты оснащаются автоматизированными на­вигационными комплексами, значительно повышающими точность, надежность и безопасность самолетовождения. Широкое применение получают системы для автоматического самолетовождения по маршруту и для автоматического захо­де на посадку.

Для эксплуатации современных самолетов и самолетов ближайшего буду­щего нужны высококвалифицированные пилоты и штурманы, глубоко знающие теорию и в совершенстве владеющие практикой самолетовождения.

ОСНОВЫ

Раздел 1 АВИАЦИОННОЙ

КАРТОГРАФИИ

Глава 1 ОСНОВНЫЕ ГЕОГРАФИЧЕСКИЕ ПОНЯТИЯ
1. Форма и размеры Земли
На основании многочисленных геодезических измерений уста­новлено, что Земля представляет собой небесное тело, не имеющее простой геометрической формы. За геометрическое тело, близкое к истинной форме Земли, принят геоид.

Геоидом называется геометрическое тело, ограниченное ус­ловной (уровенной) поверхностью, которая является продолжени­ем поверхности океанов в их спокойном состоянии. Геоид не имеет простого математического выражения, поэтому производить точ­ные вычисления по его данным очень сложно. Для упрощения раз­личных вычислений геоид заменяют эллипсоидом вращения, кото­рый имеет правильную геометрическую форму и незначительно от­личается от геоида.

Эллипсоидом вращения называется геометрическое тело, образованное вращением эллипса вокруг его малой оси.

Впервые размеры Земли были определены в глубокой древности. Но они были приближенны. Поэтому на протяжении многих лет в ряде стран велись работы по уточнению размеров земного эллип­соида.

В Советском Союзе группа ученых под руководством члена-кор­респондента Академии наук СССР профессора Ф. Н. Красовского (1878—1948 гг.) произвела многочисленные измерения на огром­ной территории Земли и в результате обработки полученных дан­ных определила более точные размеры земного эллипсоида. Этот эллипсоид1 положен в основу всех топогеодезнческих и

__________

1Его называют референц-эллипсоидом Ф. И, Красовского.
картографических работ на территории СССР и других социалистических стран Ев­ропы и Азии. Он имеет следующие характеристики (рис. 1.1):

большая полуось (экваториальный радиус) а = 6378,245 км;

малая полуось (полярный радиус) b = 6356,863 км;

полярное сжатие = = 0,00335233.

Величина сжатия Земли у полюсов является незначительной. Она составляет всего лишь 21,382 км. Следовательно, форма Земли мало отличается от шара. Поэтому для упрощения решения многих задач самолетовождения сжатием Земли пренебрегают и принимают Землю условно за шар (сферу), радиус которого R=6371 км.

Максимальные ошибки от замены эллипсоида шаром не превышают ±0,5% в определении расстояния и ±12′ в определении углов.
2. Основные точки, линии и круги на земном шаре
Земля непрерывно вращается с запада на восток. Диаметр, во­круг которого происходит это вращение, называется осью враще­ния Земли (рис. 1.2).

Эта ось пересекается с поверхностью Земли в двух точках, ко­торые называются географическими полюсами: один Се­верным (С), а другой Южным» (Ю). Северным называется тот по­люс, в котором, если смотреть на него сверху, вращение Земли на­правлено против хода часовой стрелки. Противоположный полюс называется Южным.

Через любую точку на земном шаре можно провести боль­шой и малый круги. Большим называется круг, образован­ный на земной поверхности плоскостью сечения, проходящей через центр Земли.

Малым называется круг, образованный на земной поверхности плоскостью сечения, не проходящей через центр Земли.

Большой круг, плоскость которого перпендикулярна оси вра­щения Земли, называется экватором. Экватор делит земной шар на Северное и Южное полушария.

Малый круг, плоскость которого параллельна плоскости эква­тора, называется параллелью. Через каждую точку на земной поверхности можно провести только одну параллель, которая называется параллелью места.

Большой круг, проходящий че­рез полюсы Земли, называется географическим, или истин­ным, меридианом. Через ка­ждую точку на земной поверхности, кроме полюсов, можно провести только один меридиан, который на­зывается меридианом места. Ме­ридиан, проходящий через Грин­вичскую астрономическую обсерва­торию, находящуюся в Англии вблизи Лондона, принят по между­народному соглашению в качестве начального, или нулевого, меридиана. Начальный меридиан делит земной шар на Восточное и Западное полушария.

Плоскость экватора и плоскость нулевого меридиана являются начальными плоскостями, от которых производится отсчет географических координат.
3. Географические координаты
Географические координаты — это угловые величины, которые определяют положение данной точки на земной поверхности. Гео­графическими координатами являются широта и долгота места (рис. 1.3).

Широтой места φ называется угол между плоскостью эк­ватора и направлением на дан­ную точку М из центра Земли или длина дуги меридиана, выра­женная в градусах, между эква­тором и параллелью данной точ­ки. Широта измеряется в граду­сах. Отсчет ведется от экватора к полюсам от 0 до 90°. Широта, отсчитываемая к северу, называ­ется северной и считается поло­жительной. Широта, отсчитывае­мая к югу, называется южной и считается отрицательной. Все точки, лежащие на одной парал­лели, имеют одинаковую широту. Долготой места λ назы­вается двугранный угол между плоскостью начального меридиана и плоскостью меридиана данной точки М или длина дуги экватора, выраженная в градусах, между начальным меридианом и меридианом данной точки. Долгота из­меряется в градусах. Отсчет ведется от начального меридиана к востоку и западу от 0 до 180°. Долгота, отсчитываемая на восток, называется восточной и считается положительной. Долгота, отсчи­тываемая на запад, называется западной и считается отрицатель­ной. Все точки, лежащие на одном меридиане, имеют одну и ту же долготу.

Меридиан, имеющий долготу 180°, по международному согла­шению принят в качестве линии смены дат и начала междуна­родной разграфки карт.

Долгота места, кроме угловых величин, может измеряться в единицах времени (часах, минутах и секундах). Она отсчитывается от начального меридиана к востоку и западу от 0 до 12 ч. Изме­рение долготы в единицах времени основано на суточном вращении Земли. Такое выражение долготы бывает необходимым при реше­нии некоторых задач самолетовождения.
4. Длина дуги меридиана, экватора и параллели
Зная радиус Земли, можно рассчитать длину большого круга (меридиана и экватора):

S = 2πR= 2·3,14·6371≈40000 км.

Определив длину большого круга, можно рассчитать, чему рав­на длина дуги меридиана (экватора) в 1° или в 1´:
1 ° дуги меридиана (экватора) = = =111 км.
дуги меридиана (экватора) = = 1,852 км = 1852 м.
Длина каждой параллели меньше длины экватора и зависит от широты места. Длина дуги параллели

lпар = lэкв cosφ.
Пример. Дано: широта φ=60°; дуга параллели 4°. Определить длину дуги параллели в километрах.

Решение. Находим: 1) lэкв = 111 км·4 = 444 км; 2) cos 60° = 0,5; 3) lпар = lэкв cosφ= 444 км·0,5 = 222 км.
При определении длины дуги параллели следует помнить, что при одной и той же разности долгот длина дуги параллели с при­ближением к полюсам уменьшается, так как функция косинуса с увеличением угла убывает.

Обычно длину дуги параллели определяют с помощью навига­ционной линейки.

5. Единицы измерения расстояний
В самолетовождении основными единицами измерения расстоя­ний являются километр и метр. В некоторых случаях в качестве единицы измерения расстояния применяется морская миля (ММ). В США и Англии для измерения расстояний, кроме морской мили, применяется английская статутная миля (AM) и фут. Морская ми­ля представляет собой длину дуги меридиана в 1′.

При использовании указанных единиц измерения расстояний следует знать соотношение между ними, а именно:

1 ММ = 1′ дуги меридиана =1852 м= 1,852 км;

1АМ=1,6км;

1 фут=30,48 см; 1 м = 3,28 фута.

Перевод одних единиц измерения расстояний в другие произво­дится по формулам:

S км = S ММ·1,852; S ММ = S км:1,852;

S км = S AM·1,6; S AM = S км:1,6;

НФутов = Н м·3,28, Нм =НФутов:3,28.
Обычно перевод одних единиц измерения расстояний в другие выполняется с помощью навигационной линейки.
6. Направления на земной поверхности
В самолетовождении принято направления на земной поверх­ности измерять в градусах относительно северного направления ме­ридиана. Направления могут указываться азимутом (истинным пе­ленгом) и путевым углом.

Азимутом, или истинным пеленгом, ориентира назы­вается угол, заключенный между северным направлением мериди­ана, проходящего через данную точку, и направлением на наблю­даемый ориентир (рис. 1.4, а). Азимут (пеленг) ориентира отсчиты­вается от северного направления меридиана до направления на ориентир по часовой стрелке от 0 до 360°.

Для выполнения полета из одного пункта в другой их сое­диняют на карте линией, кото­рая в самолетовождении назы­вается линией заданного пути (ЛЗП). Чтобы выпол­нить полет по ЛЗП, необходи­мо знать направление полета, которое определяется задан­ным путевым углом (ЗПУ). ЗПУ — это угол, зак­люченный между северным направлением меридиана и линией заданного шути (рис. 1.4, б). Он отсчитывается от северного направления меридиана до направления ли­нии заданного пути по часовой стрелке от 0 до 360°.
7. Ортодромия и локсодромия
Путь самолета между двумя за­данными точками на карте может быть проложен по ортодромии или локсодромии. Выбор способа прок­ладки пути зависит от оснащенности самолета навигационным обору­дованием. Каждая из указанных линий пути имеет определенные свойства.

Ортодромией называется дуга большого круга, являющаяся кратчайшим расстоянием между двумя точками А и В на поверх­ности земного шара (рис. 1.5).

Ортодромия обладает следующими свойствами:

1) является линией кратчайшего расстояния между двумя точ­ками на поверхности земного шара;

2) пересекает меридианы под различными, неравными между собой углами вследствие схождения меридианов у полюсов.

Экватор и меридианы являются частными случаями ортодро­мии. Через две точки на земной поверхности, расположенные не на противоположных концах прямой, проходящей через центр Зем­ли, можно провести только одну ортодромию. Условились путь са­молета по ортодромии называть ортодромическим, а направ­ление полета по ортодромии указывать ортодромическим путевым углом (ОПУ), заключенным между северным направ­лением меридиана и линией заданного пути в начальной точке ортодромии. В частном случае, когда ортодромия совпадает с ме­ридианом или экватором, ортодромический путевой угол остается постоянным и равным в первом случае 0 или 180°, а во втором — 90° или 270°.

Полет по ортодромии с помощью магнитного компаса выпол­нить нельзя, так как в этом случае необходимо было бы изменять направление полета самолета от меридиана к меридиану, что осу­ществить практически невозможно. Поэтому такой полет выполня­ется с помощью специальных курсовых приборов — гирополукомпаса или курсовой системы.

На полетных картах, составленных в видоизмененной поликони­ческой проекции, ортодромия между двумя пунктами, расположен­ными на расстоянии до 1000—1200 км, прокладывается прямой ли­нией, а на больших расстояниях — кривой линией, обращенной выпуклостью к полюсу. В первом случае ОПУ и длина пути по ортодромии измеряется по карте. Во втором случае ортодромия наносится на карту по промежуточным точкам, а ОПУ и длина пу­ти по ортодромии рассчитываются по специальным формулам.

В качестве исходных данных для математического расчета ОПУ и длины ортодромии служат географические координаты ее исход­ного и конечного пунктов. Эти координаты определяются с точно­стью до минуты по соответствующим справочникам или снимаются непосредственно на полетной карте.

Длина пути по ортодромии между двумя точками рассчитыва­ется по формуле

cos Sорт = sinφ1 sinφ2 + cosφ1 cosφ2cos (λ2 — λ1),

где Sорт — длина пути по ортодромии в градусах дуги; φ1 и λ1— координаты исходной точки ортодромии; φ2 и λ2 — координа­ты конечной точки ортодромии.

Чтобы получить длину пути ортодромии в километрах, нужно полученный по формуле результат выразить в минутах дуги и ум­ножить на 1,852 км.

Ортодромический путевой угол (направление ортодромии в ис­ходной точке маршрута) рассчитывается по формуле

ctgα = cosφ1 tgφ2 cosec (λ2 — λ1)— sinφ, ctg(λ2 — λ1).

При большой протяженности ортодромия наносится на карту по промежуточным точкам. Координаты φ и λ этих точек рассчи­тываются по формуле

tgφ1= Аsin(λ — λ1) + Вsin(λ2 — λ), tgφ2


При этом обычно задаются долготой λ (через 10—20°) и опреде­ляют широту φ каждой промежуточной точки. Коэффициенты А и В для всех промежуточных точек остаются неизменными. Чтобы обеспечить высокую точность конечных результатов, расчет по ука­занным формулам ведется по пятизначным таблицам тригономет­рических функций. По вычисленным координатам наносят проме­жуточные точки на карте, а затем через эти точки проводят орто­дромию в виде плавной кривой линии (рис. 1.6) или в виде отрез­ков прямых, соединяющих вычисленные точки ортодромического пути.

Математический расчет орто­дромии дает хорошую точность, но связан с громоздкими вычис­лениями. Поэтому иногда ортод­ромию наносят на полетную кар­ту при помощи навигационного глобуса или сетки, составлен­ной в центральной полярной про­екции, на которой ортодромия для любых расстояний изображается прямой линией. Используя это свойство сетки, можно произвести графический расчет ортодромии. Для этого на сетке соединяют начальную и конечную точки ортодромии прямой линией. На этой прямой намечают промежуточные точки. Затем по координатам переносят их на полетную карту и через полученные на по­летной карте точки проводят ортодромию.

Полет из одной точки в другую по магнитному компасу удобно выполнять с постоянным путевым углом, т. е. по локсодромии.

Локсодромией называется линия, пересекающая меридианы под одинаковыми путевыми углами. Путь самолета по локсо­дромии называется локсодромическим. Постоянный угол, под которым локсодромия пересекает меридианы, называется локсодромическим путевым углом.

На поверхности земного шара локсодромия имеет вид прост­ранственной логарифмической спирали, которая огибает земной шар бесконечное число раз и с каждым оборотом постепенно прибли­жается к полюсу, но никогда не достигает его (см. рис. 1.5). Путь по локсодромии всегда длиннее пути по ортодромии. Только в ча­стных случаях, когда полет происходит по меридиану или по эква­тору, длина пути по локсодромии и ортодромии будет одинаковой.

Если пункты перелета не очень удалены друг от друга, то раз­ность пути по ортодромии и локсодромии незначительна. Разность также мала и при больших расстояниях полета, если маршрут про­ходит под углом не более, 20° по отношению меридиана. При боль­ших расстояниях между пунктами перелета и особенно при на­правлении маршрута, близком к 90 или 270°, разность между рас­стояниями по ортодромии и локсодромии достигает больших зна­чений. При большой протяженности маршрута путь по ортодромии значительно сокращает расстояние, уменьшает продолжительность полета и расход Топлива, что повышает полезную нагрузку самоле­та. Поэтому полеты сверхзвуковых транспортных самолетов выпол­няются по спрямленным воздушным трассам, совпадающим с ор­тодромиями.

Локсодромия обладает следующими свойствами:

1) пересекает меридианы под постоянным углом и на поверхно­сти земного шара своей выпуклостью обращена в сторону эква­тора;

2) путь по локсодромии всегда длиннее пути по ортодромии, за исключением частных случаев, когда полет происходит по меридиа­ну или по экватору. Параллели являются частными случаями лок­содромии.

При полетах на большие расстояния разностью пути по орто­дромии и локсодромии пренебрегать нельзя. Поэтому маршрут дальнего полета, если его промежуточные точки не определены за­данием, должен прокладываться по ортодромии. В практике поле­тов по утвержденным воздушным линиям, Для которых установле­ны определенные правила, маршрут не является прямой от пункта вылета до пункта посадки, а имеет ряд изломов. Отрезки прямых выбирают с таким расчетом, чтобы разность в путевых углах в начале и конце участка не превышала 2°. При таком выборе длины участков ЛЗП прокладывается на полетной карте в виде прямой, которую принимают за локсодромию, если направление полета бу­дет выдерживаться по магнитному компасу, или за ортодромию, если направление полета будет выдерживаться с помощью специ­альных курсовых приборов. В этом случае локсодромический путь будет незначительно отклоняться от прямой линии, и для отрезков 200—250 км практически будет совпадать с ЛЗП, проложенной на карте.

Избранные страницы

Содержание

Г л а в а Ш Визуальная ориентировка

5

Гл

13

Глина 11 Применение радиотехнических средств самолетовождения

103

Гла на 1х Применение астрономических средств самолетовождения

161

Глава Х Применение комплексных навигационных систем

189

Глава Х1 Подготовка к полету

244

Глава ХП Общие правила самолетовождения

260

Глава ХШ Безопасность самолетовождения

269

Гдава хм Роспуск боевых порядков и заход на посадку

288

Роспуск боевых порядков

297

Глава Х1_ выдерживание боевых порядков при полете по маршруту

305

Глава ХИЬ Маневрирование для выхода на цель в заданное время

316

Глава ХИЛ Особенности самолетовождения в различных условиях

326

Глава Х1Х Особенности самолетовождения в различных видах и ро

347

Гла в а ХХ Особенности самолетовождения на воздушных трассах

403

16

464

Часто встречающиеся слова и выражения

Библиографические данные

Самолетовождение Часть 2
1 113 раз(а) скачали Самолетовождение Часть 2
Учебное пособие для летчиков и штурманов гражданской авиации
М.И. Лебедев 2003

Самолетовождение Часть 1
1 161 раз(а) скачали Самолетовождение Часть 1
Учебное пособие для летчиков и штурманов гражданской авиации
М.И. Лебедев 2003

САМОЛЕТОВОЖДЕНИЕ — Часть 1
1 94 раз(а) скачали Учебное пособие для летчиков и штурманов
гражданской, военно- транспортной
и стратегической авиации

М. И. Лебедев

САМОЛЕТОВОЖДЕНИЕ — Часть 2
1 75 раз(а) скачали Учебное пособие для летчиков и штурманов
гражданской, военно- транспортной
и стратегической авиации

М. И. Лебедев

Конструкция и летная эксплуатация самолета АН-26
1 88 раз(а) скачали Альбом схем. Ульяновск 2008

Пилотирование в АВАРИЙНОЙ СИТУАЦИИ НА ВЕРТОЛЕТАХ Ми-2
1 34 раз(а) скачали РЕКОМЕНДАЦИИ ЛЕТНОМУ СОСТАВУ ПО ДЕЙСТВИЯМ ПРИ
ВОЗНИКНОВЕНИИ В ПОЛЕТЕ АВАРИЙНОЙ СИТУАЦИИ НА
ВЕРТОЛЕТАХ Ми-2
МОСКВА- ДОСААФ

Аэронавигация: Основы навигации и применение геотехнических средств
1 138 раз(а) скачали Сарайский Ю.Н., Алешков И.И.

Аэронавигация. Часть I. Основы
навигации и применение геотехнических средств: Учебное пособие.-
СПб:СПбГУГА, 2010.

Изложены основные понятия аэронавигации, а также применение
аэрометрических и курсовых приборов, систем счисления пути.
Предназначено для студентов, обучающихся по направлению
подготовки «Аэронавигация».

Парашютно-спасательная подготовка
1 54 раз(а) скачали Конспект тем

Радиосвязь и РТО полетов
1 56 раз(а) скачали Радиосвязь и радиотехническое обеспечение полетов — конспект тем

Справочник пилота и штурмана гражданской авиации
1 135 раз(а) скачали Марков Г.В. — 1970

Выполнение фигур высшего пилотажа
1 104 раз(а) скачали Конспект тем

Воздушная навигация
1 98 раз(а) скачали Белкин А.М

Воздушный кодекс РФ
1 39 раз(а) скачали Воздушный кодекс РФ

Учебник по аэронавигации (1947)
1 45 раз(а) скачали Торгман, Кудрявцев, Сергеев, Горшков

Учебник по аэронавигации(1947)

Ту-154 Методика расчета элементов полета самолета
1 42 раз(а) скачали Ту-154 Методика расчета элементов полета самолета

Радио в самолетовождении (1951)
1 22 раз(а) скачали Радио в самолетовождении (1951)
Бабай, Григорий Антонович, Соколов, В. И.,

Рассказывается о принципах действия и устройстве радиотехнических средств, используемых для самолетовождения, освещаются заслуги советских ученых в развитии этих средств. Даются краткие описания некоторых радиотехнических средств самолетовождения и рассказывается об использовании этих средств в полете.

Большой авиационный словарь. АНГ-РУС-АНГ
1 143 раз(а) скачали Большой авиационный словарь. АНГ-РУС-АНГ

Распределение и переключение внимания при полетах по приборам (1972) Качоровский И. Б.
1 51 раз(а) скачали В книге рассматриваются основные принципы распределения и переключения внимания при полетах по приборам,  при выполнении захода на посадку с прямой и по большой коробочке, фигур простого и сложного пилотажа, раскрываются особенности при выполнении перехватов воздушных целей в облаках с использованием радиолокационного прицела, при выводе самолета из сложного положения и при пилотировании с усовершенствованной индикацией пилотажно-навигационных приборов, обосновывается рациональный порядок размещения пилотажно-навигационных приборов на одноместных самолетах и даются рекомендации летчику-инструктору по методике первоначального обучения летного состава.
Излагаемые в книге рекомендации являются результатом обобщения личного опыта автора в полетах по приборам и даны применительно к одноместному скоростному самолету, поскольку полет на этом самолете наиболее сложен.
Книга предназначена для летного состава ВВС и авиации других ведомств.

Интеллектуальная поддержка экипажа на основе доверительной модели замкнутой эргатической системы «самолет–летчик» (2019) Евдокименков В.Н., Красильщиков М.Н., Ким Р.В., Себряков Г.Г.
1 44 раз(а) скачали В настоящей монографии изложена концепция, базирующаяся на использовании в качестве интеллектуальной основы поддержки экипажа воздушного судна так называемой доверительной эллипсоидальной модели замкнутой эргатической системы «самолет–летчик». Эта эллипсоидальная модель формируется и в дальнейшем уточняется на основе полетных данных, накапливаемых в процессе штатного выполнения выбранного типового полетного режима на пилотажном стенде или в реальных полетах. Рассмотрены задачи вероятностного анализа и установлена их связь с проблемой оценки текущего состояния замкнутой эргатической системы «самолет–летчик». Предложены модели и алгоритмы оперативной оценки текущего состояния системы «самолет–летчик» и идентификации угроз безопасности полета на основе доверительной модели. Описана архитектура системы мониторинга состояния эргатической системы «самолет–летчик» и поддержки экипажа. Для специалистов в области человекомашинных систем и проектирования бортовых средств обеспечения безопасности полетов, а также студентов и аспирантов высших учебных заведений, специализирующихся в области интеллектуальных систем и бортового оборудования летательных аппаратов.

Пилотирование самолета и ориентация в пространстве: учебное пособие Земляной А.Ф.
1 138 раз(а) скачали Пособие посвящается анализу процесса осуществления ориентации в пространстве при пилотировании самолета как в визуальном, так и в приборном полете при использовании для инструментального отображения пространственного положения прямой (ВсВС) и обратной (ВсЗ) индикации крена. При этом раскрывается роль пространственного образа в структуре образно-концептуальной модели летчика как системообразующего фактора, обеспечивающего, с одной стороны, эффективность восприятия пилотажно-навигационной информации, а с другой минимизацию ошибок при ее считывании и при принятии решений по действиям рычагами управления. Детально анализируются состав элементов и структура образно-концептуальной модели летчика (и оперативной образно-концептуальной модели «образа полета») при стабилизации режимов полета и при выполнении маневрирования, а также структура оперативных образов, используемых для управления креном и тангажом. Даются рекомендации по выводу самолета из сложного пространственного положения, а также по организации процессов восприятия и обработки пилотажно-навигационной информации для своевременного парирования искаженного (ошибочного) отражения психикой положения самолета в пространстве (иллюзий пространственного положения).Учебное пособие предназначено для специалистов, занимающихся эксплуатацией воздушных судов, и студентов летных учебных заведений гражданской и военной авиации, обучающихся по направлению подготовки «Аэронавигация» и специальности «Эксплуатация воздушных судов и организация воздушного пространства». Оно будет полезно преподавательскому и инструкторскому составу летных училищ, а также специалистам, занимающимся проектированием самолетов, проведением сертификационных работ и испытаний авиатехники, специалистам, участвующим в анализе причин авиационных происшествий и инцидентов.

Погода и полеты самолетов и вертолетов (1980) Астапенко П.Д., Баранов А.М., Шварев И.М.
1 75 раз(а) скачали Книга содержит сведения об атмосфере Земли и влиянии погоды на полеты современных воздушных судов. В частности, рассматривается состав и строение атмосферы, основные метеорологические элементы, их пространственная и временная изменчивость. Описываются атмосферные процессы и условия погоды, имеющие важное значение для полетов в различных районах земного шара. В связи с вопросами атмосферной циркуляции кратко рассматривается классификация облаков и воздушных масс. Освещаются изменения погоды, их причины и возможности предсказания применительно к нуждам авиации. Большое внимание уделено задачам метеорологического обеспечения гражданской авиации. Важное место занимает описание, опасных для полетов явлений погоды, таких, как грозы, турбулентность воздуха и обледенение воздушных судов.

Содержание книги и стиль изложения материала рассчитаны на пилотов, штурманов и диспетчерский состав гражданской авиации, а также на работников метеорологической службы.

Самолетовождение (1958) Запорощенко С.К.
1 89 раз(а) скачали Книга предназначена для курсантов-пилотов учебных авиационных организаций ДОСААФ, впервые пришедших в авиацию. Автор поставил себе целью просто и доходчиво изложить основные сведения из теории и практики самолетовождения с тем, чтобы дать будущим летчикам знания, необходимые для грамотного выполнения маршрутных полетов днем, в простых метеорологических условиях. Основное внимание уделено рассмотрению основ теории и средств самолетовождения и практики самолетовождения. Учитывая подготовку читателей (9—10 классов), автор элементарно изложил только самые основные положения, имеющие практическое значение в самолетовождении.

Летный риск. Испытания, аварии, катастрофы (2012) Ткаченко В.
1 93 раз(а) скачали Эта книга о тяжёлых авиационных испытаниях. Автор книги – профессионал, отдавший лётно-испытательной работе 38 лет, а авиации в целом – около 50 лет. Трагедии, описанные в ней, происходили на самом деле, в то же время и в тех же местах. Построение событий, облики людей, их высказывания не противоречат истории и логике, материал изложен на документальных фактах. Информация, представленная в этой книге, будет полезной для действующих лётчиков и пассажирам. Книга посвящена всем испытателям АНТК им. О. К. Антонова и, прежде всего, тем, кто не вернулся из полёта.

Управление полетом самолета (1980) Гуськов Ю.П.
1 111 раз(а) скачали В книге изложены теоретические и практические вопросы, необходимые для понимания принципов работы ручного и автоматического управления самолетов. В нем рассмотрены принципы построения, структура, функционирование типовых контуров управления, исходя из объема решаемых в полете задач, требований летчика и особенностей самолета.

Пособие по английскому языку для специалистов по метеообеспечению международной авиации (2000) Эльянова Н.Е.
1 29 раз(а) скачали Пособие предназначено для авиационных метеорологов, авиационных специалистов, переводчиков, студентов и преподавателей.

Пилоту о работе с авиагоризонтами (1989) Коваленко П.А.
1 62 раз(а) скачали Пилоты и курсанты найдут в этой книге методику обучения эффективным способам пространственной ориентировки в визуальном и приборном полете (с авиагоризонтами «вид с земли на воздушное судно» и «вид с воздушного судна на землю»), которая способствует безопасному полету. В книге описаны принципы пространственной ориентировки и 148 иллюзий полета. Психологам и эргономистам адресованы перечни проблемных вопросов пространственной ориентировки.

Системный анализ причин ошибочного действия пилотов при расследовании авиационного события (2007) Козлов В.В.
1 42 раз(а) скачали В настоящем методическом пособие представлена процедура расследования авиационных событий в компании Аэрофлот, в основе которой лежит модель системного анализа причин ошибочного действия пилота («верная» модель).

Англо-русский словарь по авиационной метеорологии (1996) Эльянова Н.Е.
1 85 раз(а) скачали Первое издание настоящего словаря по авиационной метеорологии (с толкованием) содержит около 8 тыс. терминов и 2 тыс. сокращений, наиболее часто встречающихся в литературе по данной тематике и смежным областям: гражданской авиации, географии и, в силу компьютеризации многих процессов, связанных с метеообеспечением авиации,
вычислительной технике, а также деятельности международных организаций как в области метеорологии, так и авиации. В приложении даны формы облачности; фразеология метеоконсультаций, разработанная авторами с учетом рекомендаций Всемирной метеорологической организации (Вмо) и Международной организации гражданской авиации (Икао); перечень международных кодов Вмо, нашедших применение в авиационной метеорологии. В словаре имеется указатель русских терминов. Английские термины расположены в алфавитном порядке по гнездовой системе. Термин следует искать по основному слову, в гнезде заменяется тильдой (-). Пояснения к русскому эквиваленту заключены в круглые скобки. В переводе принята следующая система разделительных знаков: слова, относящиеся к одной части речи, разделены запятой, разные части речи — точкой с запятой.

Понравилась статья? Поделить с друзьями:

А вот и еще наши интересные статьи:

  • Руководство по ремонту кпп камаз 154
  • Тенормин инструкция по применению цена отзывы аналоги
  • Мамонт рино капли в нос инструкция
  • Foot care cream himalaya инструкция по применению
  • Руководство прокуратуры рязанской области официальный сайт

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии