Руководство по работе с осциллографом

Как правильно пользоваться осциллографом

Содержание

  • 1 Что такое осциллограф
    • 1.1 Назначение
    • 1.2 Где применяется
    • 1.3 Что может измерить осциллограф
  • 2 Виды
  • 3 Устройство
  • 4 Как функционирует осциллограф
  • 5 На что обратить внимание в Oscilloscope, ориентиры для выбора
    • 5.1 Полоса пропускания
    • 5.2 Частота дискретизации (Sampling rate)
    • 5.3 Число каналов
    • 5.4 Эквивалентная частота дискретизации
    • 5.5 Глубина памяти
    • 5.6 Обновление экрана
    • 5.7 Максимальное входное напряжение (питание)
  • 6 Основы управления
  • 7 Начало работы
    • 7.1 Синхронизация
    • 7.2 Подключение
    • 7.3 Режим входа
    • 7.4 Быстрый старт
  • 8 Измеряем напряжение
    • 8.1 Порядок действий
  • 9 Измерение частоты
  • 10 Измеряем сдвиг фаз
    • 10.1 Порядок действий
  • 11 Видео по теме

Как пользоваться осциллографом, надо знать каждому, кто желает углубить свои навыки в починке, обслуживании электротехники, в диагностических мероприятиях. Осциллограф предназначен для мониторинга изменений напряжения во времени. Устройство оснащено экраном с движущейся разверткой, показывающую графики, амплитуду, синусоиду колебаний за определенные периоды.

осциллограф

Что такое осциллограф

Осциллографом (O-Scope, Oscilloscope) регистрируют изменения (амплитуды, колебания) напряжений сигналов электроцепи с выводом в виде синусоид, пилообразных и других линий на координатную сетку на мониторе. Прибор применяют для изучения динамики системы во время ее работы. Характерный пример: тестирование импульсных, генераторных устройств (источники питания). Oscilloscope покажет форму напряжения, электросигналов во времени, уровень колебаний, изменения при определенных условиях и факторах (поломки, температура, магнитные поля, помехи, экранирование).

осциллографы

Назначение

O-Scope измеряет такие величины и решает следующие задачи:

  • тестовые меры для электросхем, сборок, изделий при их выпуске, починке, в исследовательских учреждениях;
  • всегда используется при проверке измерительных устройств;
  • электро, теле и радио сфера: свойства сигналов, степень шумов, искажений;
  • для узкоспециализированного аппаратного оснащения, для анализа АСУ, исполнительных приспособлений;
  • замеры частот и амплитуд при отладке;
  • визуальный мониторинг сигналов, фазных сдвигов;
  • анализ функционирования датчиков автомобиля.

Что такое осциллограф

Если кратко отобразить функции, то аппарат позволяет наблюдать изменения напряжения:

  • во времени: частоту, промежутки, скважность, циклы, скачки, спады, всплески;
  • на физике: колебания, амплитуды, макс./мин. среднеквадратичные значения.

Осциллограф — это «глаза», позволяющие посмотреть внутрь цепи во время ее работы. Кроме простого измерения электросигнала, современные изделия могут делать математические преобразования в реальном времени (Фурье и пр.).

Где применяется

Сферы применения:

  • всегда в научных, технических лабораториях, исследовательских отделениях на заводах, выпускающих электроприборы, например, производитель должен знать, как реагирует его продукция на помехи;
  • при углубленном анализе сборок, при наладке, ремонте электроустройств: от радио и сотовой связи до цепей двигателей машин. Для радиолюбителей прибор незаменим.

Аппарат

Аппарат выдает визуальную информацию о характеристиках сложных сигналов, показывает временные и амплитудные данные изменений, что важно для расчетов и определения, как будет себя вести изучаемый объект за периоды в конкретных условиях.

Что может измерить осциллограф

Осциллограф может измерить:

  • покажет по сигналам:
    • форму;
    • частотность;
    • период;
    • амплитуду;
    • угол сдвига фазы;
    • сравнение сигналов;
  • АЧХ (ампл.-частотную х-ку);
  • через закон Ома по показателям прибора исчисляют ток (при этом его преобразовывают в напряжение резисторами).

изменение тока

O-Scope — фактически это вольтметр, но отображающий изменения напряжения онлайн, им можно обозначить форму тока, подключив последовательно к обслуживаемой сети резистор (Rt, «t» — токовый, он же шунтирующий). Его число Ом подбирают намного меньшим, чем у цепи, чтобы отсутствовали влияния на схему. Далее, вычисляют по формуле и, зная величину Rt, можно найти ток.

формула

Виды

У цифровых моделей есть функция записи и архивирования, что расширяет возможности. Для сопоставления результатов онлайн используют аппараты с несколькими каналами. Есть экземпляры, подключаемые к ПК и комбинации с другими измерительными девайсами.

Осциллограф с мультиметром

Выбор аналоговых моделей (кроме простых и учебных) подразумевает наличие познаний во множестве настроек, регулировка усложненная. С другой стороны, такие приборы дают углубленную практику.

Разновидности Осциллографов

Цифровые модели — это рекомендованный выбор, на таком аппарате можно быстро освоить основы. Это вычислительные комплексы, с ними получение данных, интерпретация проще и намного быстрее.  Есть также модели аналогово-цифровые.

Цифровые модели

аналоговые осциллографы

Устройство

Главный узел осциллографа — трубка как у старых телевизоров, электронно-лучевая, осуществляющая визуализацию величин, принимаемых входным делителем, от которого зависят рамки допустимых замеров. Происходит усиление, синхронизация с генератором развертки. Далее, исследуемая величина попадает на оконечный усиливающий узел, на ЭЛТ, затем происходит отображение его онлайн без каких-либо задержек.

Устройство

Устройство 2

цифровой осциллограф

Алгоритм, как работает цифровой осциллограф несколько иной: он сначала пропускает сигнал через преобразователь (аналого-цифровой), замеряя его несколько раз в сек. Затем происходит реконструкция и отображение на мониторе. Одновременно данные записываются буферной памятью, есть возможность будущей их обработки.

работа осциллографа

Электронный осциллограф

Работать с цифровым осциллографом удобнее, его преимущества — полная функциональность с дополнительными опциями в маленьком корпусе, простота настроек. Выбор осциллографа в современных условиях обычно осуществляется среди указанных видов. Отдельные аналоговые старые основательные советские экземпляры (дешевле в 4–5 раз) неплохи, но они габаритные, требуют больше навыков по настройке.

Как функционирует осциллограф

Если смотреть на быстро пробегающие объекты, то увидим размытую линию. Но если периодически открывать «окошко», то будут выхватываться статичные кадры. Это принцип стробоскопа, так же, но в электронной форме работает Oscilloscope.

рассинхронизация

Действие «окошка» синхронизуется (главное условие) со скоростью объектов (сигнала), поэтому при его открытии их место стабильно. В противном случае возникнет рассинхронизация.

рассинхронизация 2

Аппарат визуализирует периодические изменения в реальном времени на табло синусоидой или линией другой формы (пила, меандр и прочее). Каждый будущий отрезок схожий с прошедшим, он «останавливается» и показывается (в 1 момент — 1 период).

периодические изменения

На что обратить внимание в Oscilloscope, ориентиры для выбора

Рассмотрим основы характеристик O-Scope, которые послужат также ориентирами, как выбрать осциллограф, надежную его модель.

характеристики O-Scope

Способы, чтобы проверить осциллограф:

  • встроенным генератором (Калибровка), все цифровые модели имеют его. Включают режим и смотрят, есть ли синусоида. Если магазин специализированный, там должен быть внешний генератор для проверки;
  • старые осциллографы начинают подвирать со временем, как проверить их есть простой способ: взять эталонный источник, например, ту же батарейку 1.5 В;
  • экран должен быть достаточной яркости, луч без артефактов;
  • дотронуться до щупа: фаза покажет синусоиду (правда с большими помехами), земля — ровную линию;
  • посредством ПК, специальным ПО.

ПО

Полоса пропускания

Это минимальная и максимальная частоты, амплитудность, то есть диапазон, который может измерить прибор. Достаточно учесть верхнюю черту; нижнюю рисуют все устройства.

Частота дискретизации (Sampling rate)

У цифровых моделей. Данный параметр связан с предыдущим. Чем выше, тем лучше (например, у Siglent SDS — 1×109). Это число считываний за единицу времени, определяет максимальные частоты без потерь на экране. У приборов с несколькими каналами может уменьшаться при задействовании их всех (при покупке надо учесть).

развертки

По теореме Котельникова част. дискр. должна превышать в 2 раза верхнюю рамку пропускания, но на практике потребуется превышение в 4–5 раза. На этом и основывается выбор. Пример для изделия с полосой до 200–800 МГц (важно учесть параметр при использовании 2 и больше каналов).

Число каналов

Многие модели способны обрабатывать больше сигналов вместе, одновременно раздельно показывая их на мониторе. Обычно от 2 до 4. Иногда включение других каналов сказывается на производительности. Выбор осциллографа рекомендовано делать среди изделий с двумя каналами, что позволит сравнивать исследуемые величины, исчислять фазные сдвиги.  Три и больше входа, это хорошо, но для обычных задач иногда чрезмерно, цена прибора возрастет многократно.

осциллографы

Эквивалентная частота дискретизации

Когда недостаточно реальной част. дискр., итоговая картинка реконструируется по нескольким последовательным измерениям. Пример: анализируется сигнал 200 МГц на модели с част. дискр. 1 млрд. выборок/сек. (1 GSa/s) — получают всего 5 измерений. По теор. Котельникова этого хватает, но можно детализировать (алгоритмическим методом) и активировать опцию: будет не 1 GSa/s, а уже 2 GSa/s.

Глубина памяти

Всегда есть в цифровых моделях (DSO=Digital Storage Oscilloscope). Чем ниже скорость развертки, тем точнее показатели и тем больше значений приходится сохранять прибору в памяти. Чем глубже память — тем лучше. Но иногда наблюдается негативный момент: при медленных измерениях прибор подтормаживает, выбирая изделие, надо поинтересоваться этим нюансом.

частота дискретизации

Обновление экрана

Чем чаще обновляется монитор, тем короче «мертвое время», требуемое для обработки захватываемой информации, более оперативно происходит обновление осциллограмм. Больше шансов, что аппарат покажет малозаметный артефакт. Впрочем, это имеет значение только для фанатов-электронщиков.

Максимальное входное напряжение (питание)

Любой прибор имеет предел по мощности питания, при превышении которого без дополнительных мер он просто сгорит, выйдет из строя. Нужно учитывать параметры обслуживаемых цепей. Пример: макс. напр. в режиме щупа 1:1 — 40 В, в режиме 1:10 — 400 В, то есть лезть в цепь с 400 В и больше без предохранительных мер уже небезопасно.

Основы управления

Большинство ручек, кнопок, переключателей осциллографа пригодятся только для профессионалов электронщиков. Поэтому рассмотрим основы, которых достаточно для большинства задач. Все остальные опции по сути, это дополнения, упрощающие исследования.

управление

Начало работы

Работа с осциллографом по аналоговому прибору описывается более подробно. В роли объекта изучения можно использовать несложные модели: чрезвычайно простой учебный осциллограф н3013 или популярный С1-83. По цифровому — все то же, но он унифицирует, обобщает некоторые моменты.

осциллограф н3013

подготовка прибора

В лучевой трубке Oscilloscope пучки электронов, идущие на табло, провоцируют свечение люминофора (светлая точка посередине). Отклоняющие пластины (2 пары) дают возможность гонять ее. Чем выше напряжение на клеммах, тем значительнее она подвигается. Подающееся напряжение на пласт. Х (вертикальные) инициирует пилообразную развертку, луч бегает циклически (это линия развертки или нуля). На пласт. Y подключают исследуемые величины.

кнопки управления

Синхронизация

Перед тем, как работать с осциллографом, надо изучить основы (управление, подключение, какие щупы и прочее). Главный пункт взаимодействия — синхронизация. Если старт пилы (самое левое положение луча) и сигнала совпали, то 1 проход развертки покажет 1 или больше периодов и изображение как бы застынет. Изменяя скор. развертки делают так, что на табло будет только 1 отрезок: за 1 пер. пилы пройдет 1 пер. анализируемого сигнала.

структура управления

Способы синхронизации:

  1. Пила и сигнал синхронизируются, регулируя селектором скорость до остановки синусоиды
  2. Задается уровень, указывают напряжение на входе для активации генератора. Пила появится, только при выставленном значении, синхронизация автоматическая. Надо учесть помехи: они могут активировать генератор ошибочно (уровень чрезмерно низкий), если очень высокий — сигнал не запустит систему.

Надо знать следующее:

  • по горизонтали смещение луча прямо пропорциональное времени;
  • по вертикали — пропорционально исследуемому напряжению.

Подключение

В осциллографе нет отдельных двух щупов, как у мультиметра. Есть один кабель с 2 отростками, жилами (напряжение меряют между 2 точками), втыкаемыми в розетку с 2 клеммами. Если на приборе гнезд с ними больше одного, то прибор двух или многоканальный.

осциллограф

Две клеммы:

  • для фазы — подключена к входу усилителя, отклоняющего луч по вертикали;
  • общая (земля, минус) — связана непосредственно с корпусом аппарата.

В иностранных приборах провод с «крокодилом» — земля, фаза — игла, которой тыкают в контакты проверяемых схем, в ножки микропроцессоров и прочее. В отечественной продукции часто провода одинаковые. Узнать назначение можно, коснувшись их рукой: минус (земля) — на экране ровная линия, фаза — искаженная синусоида.

осцилограмма

Нельзя использовать любой провод для щупа — в осциллографе это только коаксиальные специальные изделия, любой другой кабель покажет чушь.

щупы осциллографа

Упрощенно алгоритм использования, как подключить к анализируемой цепи и провести исследование:

  1. Осциллограф ставят в удобное место, ручки приводят в нормальное или нейтральное положение.
  2. Если есть калибратор, то надо откалибровать по инструкции.
  3. Землю сажают на «−» или общую жилу в исследуемой схеме. Если их невозможно определить — подключают к любому из контактов, между которыми проводят исследование. Сигналом тычут по схеме.

Прибор отображает напряжение на щупе по отношению к общему проводку. На некоторых таких шнурах (прямо на них) есть делители 1:0, 1:100 с тумблерами вкл./выкл., позволяющие воткнуть концы хоть напрямую в 220 В, не рискуя сжечь прибор.

подключение осциллографа

Режим входа

Регулятор с прямой и, ниже нее, волнистой чертой — это режим входа. Верхняя позиция — допустимо подавать любое напряжение. Средняя — позволяет установить развертку. Нижняя позиция — только для переменной величины, при этом подключение идет через встроенный конденсатор.

Пример: надо проанализировать помехи на БП с 12 В, их интенсивность возможна до 0.3 В. На фоне 12 В незаметно. Можно повысить коэфф. по Y, но график выйдет за монитор, а смещения не хватит для наблюдения вершины. Тогда включаем в цепь конденсатор и 12 В осядут там, а в O-Scope пойдет переменная величина — 0.3 В помех, визуализацию усиливают и разглядывают полный масштаб.

деления

Быстрый старт

Экран размечен линиями с делениями Y (вертикаль) и X (горизонталь) – это декартовая система координат, их селекторы (большие и заметные) — главные органы управления:

  • Усиление (В/дел, вольт/на деление) — масштабирует по оси Y, чтобы просмотреть весь сигнал, и там же указано, сколько В на деление в итоге отобразится. Пример: если стоит 2 В на деление, а сигнал занимает две клеточки в высоту, то амплитуда равна 4 В; при выборе 1 В и подачи синусоиды ампл. в 0.2 В она займет 4 кл.;
  • Длительность (Развертка) — регулировка частоты. Тут деления в мс и мкс. Чем меньший промежуток и больше частота, тем высокочастотный сигнал можно разглядеть и по его ширине можно исчислить, сколько он клеток, а умножив на масш. по линии X, получим его длительность в сек. Можно рассчитать один период, затем — значение частоты — f=1/t. Данная ручка — для выставления скорости луча на табло слева/направо. В цифровых аппаратах — сплошная линия. Поступающий через вход сигнал отклоняет луч вверх/вниз: возникает волнообразная синусоида, пила или иная форма линии, отображая шумы, помехи.

главные органы управления

Клавиша развертка и крутилки со стрелочками позволят гонять график по экрану для удобства его восприятия и подгонки нужного участка под квадратики сетки. А изменяя скорость, частотность бега луча (величину частоты развертки), добиваются синхронизации, замирания изображения.

развертка

Измеряем напряжение

Для уменьшения погрешности, так как наблюдение визуальное, рекомендовано, чтобы график занимал 80–90 % монитора. Когда делают замеры напряжения и по частоте (есть временный интервал), надо регуляторы усиления и скорости развертки разместить в крайние правые позиции.

Измеряем напряжение

Порядок действий

график

Напряжение измеряется масштабированием по вертикали. Алгоритм:

  1. Перед началом замыкают сигнал щупа на свой же земляной проводок (иглу на «крокодил») или выставляют тумблер режима входа в позицию «земля».
  2. Высветится «пульс трупа», если нет, то надо подвигать смещение, стабилизацию и уровень — возможно изображение спряталось, не запустилось.
  3. Регулируем селекторами смещение полосы на ноль и регулятором «вверх-вниз» выставляем развертку на горизонталь сетки, так можно будет корректно рассчитать высоту осциллограммы. Если осциллограф старый или аналоговый, то надо ему дать прогреться минут 5.
  4. Выставляем предел измерений по напряжению, рекомендовано брать с запасом, потом можно уменьшить.
  5. На вход дают сигнал (или его переключатель переводится в одно из рабочих позиций). На мониторе появится график.
  6. Проиллюстрируем процесс: батарейка имеет 1.5 V, если прикоснуться земляным отростком щупа к ее минусу, а сигнальным — к плюсу, то появится скачок графика на 1.5 Вольта.

график 2

Для нахождения высоты графика осциллограмму подвигают селектором, чтобы отметка, по которой исчисляется амплитуда, была на центральной вертикали с долями. Получим чувствительность отклонения — 1 в/дел, размер осциллогр. — 2.6 дел., а отсюда ампл. = 2.6 В.

Ниже иллюстрация на аналоговом аппарате: 3.4 дел. — макс. напряжения. На соседнем рисунке — масштабирование по вертикали. Регулятор «плавно» (часть с зеленой риской) – в правой предельной позиции, черточка тумблера чувствительности — 0.5 в/дел. Множитель по масшт. — ×10. Расчет напряжения:

Расчет напряжения

Расчет напряжения

Измерение частоты

Частота — это временная характеристика, интервалы, периоды сигнала; их измерение — прямое назначение осциллографа. Исследуемое значение всегда обратно пропорционально его периоду, который можно замерить в любой области осциллограммы. Но комфортнее и точнее это сделать в точках пересечения графика с горизонталью по центру (ось времени).

Измерение частоты

Перед исследованием полосу развертки выставляем на центральную горизонталь. Используя ручку со стрелкой в обе стороны, смещаем начало периода с самой крайней левой полосой на мониторе. В нашем случае промежуток = 6.8 дел., скор. развертки — 100 мкс/дел. Исчисления:

Исчисления

графики

Выше на схожих двух рисунках те же сигналы, но при разной скорости развертки. По первому изображению исчисление частоты (точное значение — 1.459 кГц) имеет большую погрешность, по второму — меньшую, так как большую точность при измерении получают, если растянуть картинку.

На втором рисунке период чуть превышает 6.8 дел. и частота в реальности чуть ниже (1.459 КГц), чем полученная (1,47 КГц). Отклонение меньше 1 %, это допустимо и считается высокой точностью, ее обеспечит цифровой O-Scope (с линейной разверткой). В аналоговых моделях отклонение было бы выше. Характерная закономерность: с увеличением периода снижается частота (пропорция обратная), и наоборот.

Измеряем сдвиг фаз

Иногда бывает, что фазы напряжения и тока расходятся (при проходе через конденсаторы, индуктивность). С двухканальным O-scope возможно посмотреть уровень различий.

Измеряем сдвиг фаз

Сдвиг фаз покажет два процесса в движении, их положение с колебаниями. Измеряют не в ед. времени (горизонталь), а в долях промежутка сигнала (ед. угла). Одинаковому взаимному размещению сигналов соответствует такой же сдвиг, и он не зависит от периода и частоты. Поэтому измерения достовернее при максимальном растяжении периодов на мониторе.

Порядок действий

управление

прибор

Этапы (модель С1-83):

  1. Крутилками со стрелками 2 каналов (по вертикали) развертку ставят на центральную линию (сигнал на входе отсутствует).
  2. Усил. (вертикаль) на первом канале устанавливают (ступени и плавно) большую амплитуду, на втором — делают ее меньшей.
  3. Скор. разв. настраивают, чтобы на табло поместился 1 определенный промежуток.
  4. Уровнем синхронизации выставляют старт графика с временной линии (развертки, т. А), а селектором с горизонтальной чертой с двумя стрелками — чтобы с крайней левой грани экрана (т. А);
  5. Скор. разв. (ступени и плавно) добиваются финиша графика на крайней правой вертикальной грани.
  6. Повторяют описанное, растягивая диаграмму на весь монитор, стартовая и финишная точка должны совпадать с полосой развертки.
  7. Определяют опережение, угол сдвига (φ) зависит от этого. Ниже на первом рис., ток отстает его старт позже (т. А и Б). На соседнем рисунке (б) он первый, его старт не показывается, поэтому смотрят на финиш первого полупериода: первым к 0 придет диаграмма, начавшаяся раньше (отметка Г подходит быстрее В).

φ — модуль угла, промежуток между начальной и финишной точками периода. Далее, φ узнаем по правилу: 1 промежуток любого колебания = 360° (это стабильная пропорция).

φ – модуль угла

график 3

Замеры возможны и по концам периодов (Д и Е), но в правом сегменте монитора линейность плохая, вероятность погрешностей увеличивается.

Пример исчисления с графической иллюстрацией:

Пример исчисления

график 4

Видео по теме



Особенности внутреннего устройства

Несмотря на сложное внутреннее оснащение на базе ЭЛТ, прибор с дисплеем может состоять из нескольких составляющих. К ним относятся:

  • Входной стандартный усилитель для наблюдаемых сигналов, чей выход подключается напрямую к пластинам вертикального отклонения.
  • Электронно-лучевая осциллографическая трубка. Широко используется в ряде близких по назначению измерительных приборов.
  • Далее идёт блок горизонтальной развёртки. Однократный тип или периодический сигнал преобразуется в пилообразную форму. Он направляется к пластинам с горизонтальным типом отклонения ЭЛТ. Помимо этого, в период спадающей фазы создаётся импульс гашения электронных лучей, подаваемый на модуляторы ЭЛТ.
  • К вспомогательным или дополнительным частям устройства осциллографа относят калибратор длительности, возможной амплитуды и блок управления яркости.

Экран «А» позволяет чётко отобразить графики каждого поступающего входного сигнала. Цифровые аналоги выводят на цветной или специфический монохромный дисплей желаемое изображение как полностью готовую картинку. Остальные модели используют электронно-лучевую трубку, оснащённую показателями электростатического отклонения. Для таких экранов характерна нанесённая в виде координатной сетки разметка, миссия которой — показывать точное местоположение данных.

Выделяют два базовых типа развёртки: ждущий и автоколебательный, или автоматический. Реже можно встретить модели с дополнительным однократным режимом. Каждый вид имеет свои специфические черты:

Однократный запуск. Характерный механизм запуска — внешнее воздействие. Так, нажатие кнопки и дальнейшее ожидание запуска сходны со ждущим режимом. После запуска развёртывание производится однократно. Повторная развёртка требует ещё одного запуска. Подобная система работы комфортна для изучения функционирования процессов непериодического типа. Недостатком является однократный пробег светящегося пятна по дисплею. Яркость картинки недостаточна, что серьёзно затрудняет процесс наблюдения при быстрой развёртке. Ждущий режим. Недостаточный уровень или отсутствие сигнала вызывает отсутствие развёртки и дальнейшее угасание экрана. Запуск возможен только при достижении сигналами определённого заданного оператором уровня. Возможна настройка запуска как по падающему, так и по нарастающему сигнальному фронту

Важно отметить, что при изучении непериодических типов импульсных процессов такая система гарантирует зрительную неподвижность картинки на экране. Зачастую развёртывание запускается синхронным, несколько опережающим процесс наблюдения сигналом. Автоматическое развёртывание

В этом случае генератор функционирует в автоколебательном типе режима. Благодаря этому даже при отсутствии сигнала в момент окончания цикла произойдёт очередной момент её запуска. Это делает возможным наблюдение изображения на экране даже в ситуации подачи на входе вертикального типа отклонения постоянного напряжения или отсутствия сигнала. Подобный режим характеризуется особым захватом частоты генератора развёртывания наблюдаемым сигналом. Важно, что частота генераторов при этом в целое количество раз меньше частоты исследуемых сигналов.

Как работать с осциллографом

Первоначально выставляются режим работы осциллографа (автоколебательный, ждущий или одиночный). Затем выбирается режим аттенюатора или устанавливается соответствующий делитель напряжения. Это касается аналоговых приборов. Цифровые на входе анализируют сигнал и понижает/повышает его до необходимого уровня. В них на входе стоит аналитический блок, который сам понижает или повышает входной сигнал до требуемого уровня.

Подключение осциллографа

В комплекте с осциллографом идет измерительный шнур или шнуры. Их количество зависит от числа входных каналов конкретной модели. Если канал один, то и шнур один. Может быть два, три и до шестнадцати. Подключать надо столько, сколько собираетесь использовать.

Шнуры для осциллографа трудно спутать с другими. Один конец — со щупом и ответвлением. Это «измерительная» сторона. С другой находится характерный круглый разъем. Эта часть подключается к измерительному входу.

Провод, который идет в сторону от щупа — для подключения к «земле». Он часто бывает снабжен прищепкой или «крокодилом». Его подключать обязательно, вольтаж может быть разный и заземление необходимо.

Измерительные шнуры для осциллографа

Некоторые шнуры для осциллографа имеют на рукоятке переключатель, который работает как небольшой усилитель (на фото справа).

После подключения измерительных шнуров включаем прибор в сеть. Затем, перед работой, переводим в рабочее положение тумблер/кнопку включения прибора. Можно считать что осциллограф готов к работе.

Проверка осциллографа перед работой

Перед началом работы надо проверить осциллограф. Включаем его в сеть, устанавливаем измерительный шнур. К щупу прикасаемся пальцем, на экране появляется синусоида частотой 50 Гц — наводки от бытовой электросети.

Если пальцем прикоснуться к измерительному щупу, на экране появится синусоидальной формы сигнал. Синусоида неидеальна, но если она есть и ее частота 50 Гц, это значит, что осциллограф исправен

Затем берем земляной щуп и прикасаемся им к измерительному (палец продолжаем держать на острие щупа). Сигнал пропадает (отображается прямая). Это значит, что прибор исправен.

Как измерить осциллографом напряжение: переменное, меандра, постоянное

Как уже говорили, напряжение на экране осциллографа отображается по вертикали. Весь экран разбит на квадраты. Цена деления по вертикали выставляется переключателем, который подписан «V/дел». Что и обозначает, Вольт на одно деление

Перед подачей сигнала выставляем луч точно по горизонтальной оси — это важно

Подаем сигнал и считаем, на сколько клеточек от нулевого уровня поднимается или опускается сигнал. Затем умножаем количество клеток на «цену деления», взятую с регулятора. В результате получаем напряжение сигнала. В случае с синусоидой или меандром (положительные и отрицательные прямоугольные импульсы) считается напряжение полуволны — верхней или нижней.

Измерение напряжения осциллографом

Чтобы было понятнее, разберем пример. На фото есть сигнал, полуволна которого понимается и опускается на три клеточки. Цена деления на регуляторе — 5 В. Имеем: 3 дел * 5 V/дел = 15 V. Получается, данный сигнал имеет напряжение 15 вольт.

Если надо измерить постоянное напряжение, снова выставляем луч по горизонтали. Подаем напряжение и смотрим, на сколько клеток «подпрыгнул» или опустился луч. Дальше все точно так же: умножаем на цену деления и получаем значение постоянного напряжения.

Как осциллографом определить частоту

Частота определяется как 1/T, где Т — период сигнала. А период — это время, за которое сигнал проходит полный цикл. Для сигнала на экране это 5,7 клетки. Считаем от места пересечения с горизонтальной осью и до второй аналогичной точки.

Как определить частоту сигнала по осциллографу

Далее определяем частоту деления по переключателю развертки. Положение переключателя стоит на 50 миллисекунд. Берем количество делений и умножаем на количество клеток. Получаем 50 мс * 5,7 = 285 мс. Переводим в секунды. Для этого надо разделить на 1000. Получаем 0,285 сек. Считаем частоту: 1/0,285 = 3,5 Гц

Порядок проведения измерений

Настройка

Для начинающих пользователей обращение с осциллографом в первое время вызывает определённые трудности, поскольку у этого прибора имеется множество всевозможных регуляторов и настроек. Для того чтобы разобраться с функционалом измерительного прибора, следует сначала отстроить его, придерживаясь при этом следующих правил:

  • После включения прибора, прежде всего, следует убедиться в наличии на его экране горизонтальной полосы развёртки;

Важно! Если полоса плохо видна и сильно размыта, ручками «Фокусировка» и «Яркость» следует привести её к требуемому виду (она должна быть чёткой, тонкой и хорошо различимой на тёмном фоне).

  • При её отсутствии необходимо сначала увеличить яркость луча, а затем попытаться найти его след на экране, вращая ручки перемещения вправо и влево (вверх или вниз);
  • Если это не помогает, вращением ручек синхронизации («Уровень», «Стабильность») следует добиться появления устойчивого изображения;
  • После этого необходимо отстроить его по масштабной сетке (выставить его по центру), а затем прикоснуться к измерительному острию шнура пальцами и убедиться, что на нём появляются небольшие шумовые всплески.

На этом настройку прибора можно считать законченной.

Измерение

Для того чтобы получить на экране искомое изображение, сначала следует определиться с примерными значениями частоты и амплитуды действующего в цепи напряжения (если это возможно). После этого выполняются следующие операции.

Сначала ручки переключателей «Амплитуда» («Усиление») и «Длительность» выставляются в положение, соответствующее предполагаемому размаху и частоте измеряемого сигнала.

Так, если он имеет ожидаемую амплитуду в пределах единиц Вольта и частоту порядка одного МГц, носик ручки «Усиление» устанавливается напротив деления 1 Вольт (или чуть больше).

Одновременно с этим ручку развёртки устанавливают у отметки 1 Мкс, что соответствует одному мегагерцу (F=1/T = 1/{1/1000000 сек} = 1 МГц).

Дополнительная информация. Выставленные вручную значения амплитуды и частоты определяют «цену» одного деления имеющейся на экране графической разметки (по вертикали и горизонтали, соответственно). При амплитуде исследуемого сигнала 3 Вольта, например, на экране он будет занимать по вертикали 3 клетки.

В том случае, когда эти значения заранее неизвестны, при измерении может появиться «сплошной» сигнал, форму которого сразу определить не удаётся. Для устранения этой неопределённости следует сделать несколько переключений ручкой «Развёртка», после чего в определённом положении сигнал должен будет приобрести удобный для восприятия вид.

Это может быть синусоида, импульс или сложная, но хорошо различимая по форме кривая.

Измерение параметров сигнала

После того, как прибор настроен и откалиброван по разметочной сетке, с полученным изображением можно обращаться как с обычным графическим представлением сигнала. Это значит, что его можно изучать на предмет соответствия формы заданным параметрам (искажение синусоиды, например), а также измерять приблизительные значения его амплитуды и частоты.

Измерение параметров импульсного сигнала

В качестве примера возьмём уже рассмотренный ранее режим, когда предел измерений по уровню выбран 1 Вольт, а по частоте он соответствует 1 микросекунде. В этом случае амплитуда сигнала определяются следующим образом:

  • Сначала полученное изображение выставляется строго по центру графической сетки;
  • Потом регулятор «Усиление» переводится в крайне правое положение, соответствующее точному значению выбранного масштаба (1 Вольт);
  • Вслед за этим по шкале отмеряется количество клеток, которые занимает изображение сигнала, после чего оно умножается на цену одного деления.

Так, если изображение по вертикали заняло 3 клетки, то можно сказать, что амплитуда измеряемого сигнала равна трём вольтам.

Обратите внимание! Такие же манипуляции проделываются и с частотой измеряемого синусоидального напряжения, но только в этом случае за масштаб отсчёта по горизонтали берутся показания его развёртки (1 МГц).

При измерении частоты изображение приводится к удобному для восприятия виду, так, чтобы в одной клетке масштаба уместилось заданное количество полных колебаний (при выведенной в правое положение ручке «Развёртка»). Если таких периодов насчитывается три штуки, например, частота сигнала равна трём мегагерцам.

В заключение отметим, что с помощью двухлучевого осциллографа можно определиться с таким показателем, как фаза сигнала, измеренная по отношению ко второму колебательному процессу. Для этого достаточно совместить начальные точки обоих исследуемых процессов и измерить отставание одного из них по горизонтальной шкале разметки.

Сдвиг фаз

Применение

Осциллографы по сути своей работы схожи с вольтметрами. Отличием является то, что осциллограф способен не только отображать напряжение, но и исследовать изменение продолжительности его действия.

Осциллографы широко применяются в электронных механизмах для изучения их работы и изменения их параметров. А также для ремонта элементов и узлов в различных электроприборах.

Прибор помогает диагностировать поломки большого количества автомобильных датчиков, положение распредвала и коленвала. А также дефекты работы катушек и свечей зажигания.

Принцип работы осциллографа довольно сложно понять, не зная основных структурных элементов этого прибора и их функций. Эти сведения помогут научиться пользоваться осциллографом для диагностики неисправностей различных приборов. Ведь без использования осциллографа ремонт некоторых сложных устройств не представляется возможным.

Как подключить импортный осциллограф

Нужно внимательно ознакомиться с руководством пользователя, подготовить рабочее место для прибора, качественно его заземлить.

Важно! Заземление гарантирует, что при работе на корпусе не будет опасного статического заряда, коснувшись которого рукой можно получить удар. Далее нужно определить точки для снятия сигнала, нулевую магистраль, посредством щупа произвести их коммутацию с аттенюатором (при неизвестных уровнях сигнала выставить максимальную амплитуду)

Включить прибор, дать ему прогреться, выставить необходимые режимы и произвести замеры. Снять показания, замеры повторить несколько раз

Далее нужно определить точки для снятия сигнала, нулевую магистраль, посредством щупа произвести их коммутацию с аттенюатором (при неизвестных уровнях сигнала выставить максимальную амплитуду). Включить прибор, дать ему прогреться, выставить необходимые режимы и произвести замеры. Снять показания, замеры повторить несколько раз.

Проверка осциллографа

В инструкции по эксплуатации обязательно описан процесс калибровки (проверки) устройства. Практически любой осциллограф имеет сзади или сбоку корпуса специальный выход генератора прямоугольных импульсов. Его используют для калибровки прибора. При подключении сигнального щупа к калибровочному выходу на экране должна появиться пилообразная линия. Поставив воспроизведение луча в режим «Авто», нужно проверить работу всех функций, покрутив ручки. Яркость должна регулироваться, фокусировка — фокусировать, луч должен двигаться вверх, вниз при масштабировании. При настройке синхронизации осциллограмма должна останавливаться.

Самый же простой способ убедиться в работоспособности прибора — это коснуться пальцами щупа. Луч должен реагировать на прикосновение.

Основные функции работы и возможности осциллографа, описанные выше? наверняка помогут начинающим. Многие вопросы, возникающие в процессе использования агрегата, можно понять лишь с опытом. Прибор достаточно сложен, но изучив его, легко решаются задачи диагностики и ремонта фактически любых электронных схем.

Блог о электронике

▌Старая статья о аналоговом осциллографе

Рано или поздно любой начинающий электронщик, если не бросит свои эксперименты, то дорастет до схем, где нужно отслеживать не просто токи и напряжения, а работу схемы в динамике. Особенно это часто нужно в различных генераторах и импульсных устройствах. Вот тут без осциллографа делать нечего !

Страшный прибор, да? Куча ручек, каких то кнопочек, да еще экран и нифига не понятно что тут да зачем. Ничего, сейчас исправим. Сейчас я тебе расскажу как пользоваться осциллографом.

На самом деле тут все просто — осциллограф, грубо говоря, это всего лишь… вольтметр ! Только хитрый, способный показывать изменение формы замеряемого напряжения.

Как всегда, поясню на отвлеченном примере. Представь, что ты стоишь перед железной дорогой, а мимо тебя с бешеной скоростью мчится бесконечный поезд состоящий из совершенно одинаковых вагонов. Если просто на них стоять и смотреть, то ничего кроме размытой фигни ты не увидишь. А теперь ставим перед тобой стенку с окошком. И начинаем открывать окошко только тогда, когда очередной вагон будет в том же положении, что и предыдущий. Так как у нас вагоны все одинаковые, то тебе совершенно необязательно видеть один и тот же вагон. В результате картинки разных, но идентичных вагонов будут выскакивать перед твоими глазами в одном и том же положении, а значит картинка как бы остановится. Главное это синхронизировать открытие окошка со скоростью поезда, чтобы при открытии положение вагона не менялось. Если скорость не совпадет, то вагоны будут «двигаться» либо вперед, либо назад со скоростью, зависящую от степени рассинхронизации.

На этом же принципе построен стробоскоп — девайс, позволяющий разглядывать быстро движущиеся или вращающиеся хреновины. Там тоже шторка быстро-быстро открывается и закрывается.

Так вот, осциллограф это тот же стробоскоп, только электронный . А показывает он не вагоны, а периодические изменения напряжения. У той же синусоиды, например, каждый следующий период похож на предыдущий, так почему бы не «остановить» его, показывая в один момент времени один период.

Конструкция Делается это посредством лучевой трубки, отклоняющей системы и генератора развертки. В лучевой трубке пучок электронов попадая на экран заставляет светится люминофор, а пластины отклоняющей системы позволяют гонять этот пучок по всей поверхности экрана. Чем сильней напряжение, приложенное к электродам, тем больше отклоняется пучок. Подавая на пластины Х пилообразное напряжение мы создаем развертку . То есть луч у нас движется слева-направо, а потом резко возвращается обратно и продолжает снова. А на пластины Y мы подаем изучаемое напряжение.

Принцип работы Дальше все просто, если начало появления периода пилы (луч в крайне левом положении) и начало периода сигнала совпадают, то за один проход развертки нарисуется один или несколько периодов измеряемого сигнала и картинка как бы остановится. Меняя скорость развертки можно добиться того, что на экране вообще останется только один период — то есть за один период пилы пройдет один период измеряемого сигнала.

Работа с осциллографом для начинающих

Синхронизация Синхронизировать пилу с сигналом можно либо вручную, подстраивая ручкой скорость так, чтобы синусоида остановилась, а можно по уровню . То есть мы указываем при каком уровне напряжения на входе нужно запустить генератор развертки. Как только напряжение на входе превысит уровень, так сразу же запустится генератор развертки и выдаст нам импульс. В итоге, генератор развертки выдает пилу только тогда, когда надо. В этом случае синхронизация получается полностью автоматической. При выборе уровня следует учитывать такой фактор, как помехи. Так что если взять слишком низкий уровень, то мелкие иголки помех могут запустить генератор когда не нужно, а если взять уровень слишком большой, то сигнал может под ним пройти и ничего не случится. Но тут проще покрутить ручку самому и сразу же все станет понятно. Также сигнал синхронизации можно подать и с внешнего источника.

Работа с осциллографом для начинающих

В топку теорию, переходим к практике. Показывать буду на примере своего осциллографа, спертого когда то давно с оборонного предприятия КБ «Ротор» :). Обычный осцил, не шибко навороченный, но надежный и простой как кувалда.

Работа с осциллографом для начинающих

Мой верный осциллограф

Итак: Яркость, фокус и освещение шкалы думаю не требуют пояснений. Это настройки интерфейса.

Усилитель У и стрелочки вверх вниз. Эта ручка позволяет гонять изображение сигнала вверх или вниз. Добавляя ему дополнительное смещение. Зачем? Да иногда не хватает размера экрана, чтобы вместить весь сигнал. Приходится его загонять вниз, принимая за ноль не середину, а нижнюю границу.

Ниже идет тумблер переключающий ввод с прямого, на емкостный. Этот тумблер в том или ином виде есть на всех без исключения осциллографах.

Работа с осциллографом для начинающих

Важная вещь! Позволяет подключать сигнал к усилителю либо напрямую, либо через конденсатор. Если подключить напрямую, то пройдет и постоянная составляющая и переменная . А через кондер проходит только переменная .

Например, надо нам посмотреть на уровень помех блока питания компа. Напряжение там 12 вольт, а величина помех может быть не более 0.3 вольт. На фоне 12 вольт эти жалкие 0.3 вольт будут совсем незаметны. Можно, конечно увеличивать коэффициент усиления по Y , но тогда график вылезет за экран, а смещения по Y не хватит, чтобы увидеть вершину. Тогда нам нужно лишь врубить конденсатор и тогда те 12 вольт постоянки осядут на нем, а в осциллограф пройдет только переменный сигнал, те самые 0.3 вольта помехи. Которые можно усилить и разглядеть в полный рост.

Далее идет коаксиальный разъем подключения щупа . Каждый щуп содержит в себе сигнал и землю . Землю обычно сажают на минус или на общий провод схемы, а сигнальным тычут по схеме. Осциллограф показывает напряжение на щупе относительно общего провода. Чтобы понять где сигнальный, а где земля достаточно взять за них рукой по очереди. Если возьмешься за общий, то на экране по прежнему будет пульс трупа. А если взяться за сигнальный, то увидишь кучу срача на экране — наводки на твое тело, служащее в данный момент антенной. На некторых щупах, особенно на современных осциллографах, внутри встроен делитель напряжения 1:10 или 1:100 , который позволяет воткнуть осциллограф хоть в розетку, без риска его спалить. Включается и выключается он тумблером на щупе.

Еще почти на каждом осциллографе есть калибровочный выход . На котором ты всегда можешь найти прямоугольный сигнал частотой 1Кгц и напряжением около полувольта . В зависимости от модели осцила. Используется для проверки работы самого осциллографа, ну иногда и в тестовых целях пригождается

Осциллограф – это цифровой или аналоговый прибор предназначенный визуального контроля формы напряжения и токов. Любой мастер или инженер занимающийся ремонтом электроники, должен уметь пользоваться Oscilloscope, для проведения диагностики.

Назначение осциллографа

Для разработки и ремонта современной электронной техники нужны специализированные знания в области электронных схемопостроений. При проектировании или исследовании любой схемы необходимо проводить измерения.Так как большинство схем имеют импульсный режим работы, то приборы должны соответствовать исследуемой технике. 

Если мы до этого могли свободно обходиться мультиметром, измеряя необходимые значения токов и напряжения, то при диагностике современной электроники этого будет недостаточно. Так как помимо значений измеренных мультиметром, необходимо визуально контролировать форму сигнала устройства или участка схемы, который исследуется. 

В этом случае применяется прибор называемый – Осциллографом. Данный прибор визуально показывает какие процессы происходят в электрической схеме, в определенный момент исследования. На практике научиться применять Oscilloscope можно пройдя очное обучение по программе Электроника и схемотехника в Bgacenter.

Визуализация процессов используя АКИП-4115/4А

Визуализация процессов используя АКИП-4115/4А

Осциллографы существуют двух видов: 

  • аналоговые
  • цифровые

Развитие электронной техники вытеснили аналоговые, а цифровые завоевали особую популярность среди электронщиков и начинающих радиолюбителей. За счет простоты их использования, а также минимальной подготовки к работе. Данные приборы обладают большим функционалом, многими полезными функциями, которые отсутствуют у аналоговых приборов. При ремонте и настройке блока питания APW8 необходимо применять Oscilloscope, для визуального контроля амплитуды и длительности на входах полевых транзисторов каскада PFC и оконечного каскада.

Осциллограф – это практически тот же вольтметр, где измеряется напряжение, поэтому прибор подключается параллельно к участку измеряемой цепи, либо параллельно источнику питания. Если применить закон Ома, то можно увидеть форму тока. Для этого необходимо применить сопротивление значением 1 Ом, а при делении напряжения на сопротивление в 1 Ом получим силу тока и его форму.

Настройка осциллографа

В данной инструкции будем рассматривать все примеры, применяя цифровой осциллограф АКИП-4115/4А. 

Для использования прибора его необходимо подключить к электрической сети, при помощи сетевого шнура идущего в комплекте с прибором. 

Далее на верхней части корпуса необходимо нажать кнопку, подождать некоторое время, когда загрузится программа осциллографа. На экране появится заставка с названием прибора. После загрузки операционной системы устройства засветится дисплей (горизонтальная линия на экране прибора). 

АКИП-4115/4А

АКИП-4115/4А

Так как Oscilloscope является двух канальным, то по умолчанию включается первый канал. Клавиша КАН 1 на передней панели, обозначена желтым цветом. Канал подсвечивается, а на экране прибора так же светится желтая линия. 

В нижней части панели управления имеется высокочастотный разъем BNC (Bayonet Neill-Concelman), также желтого цвета, что соответствует подсвечиваемой линии на экране осциллографа. Для второго канала используется синий цвет, это связано с  удобством в работе при одновременном наблюдении осциллографом сигнала в исследуемом устройстве.

КАН1

КАН1

Для дальнейшей работы необходимо перейти к определенным настройкам АКИП-4115/4А. По умолчанию может быть выставлен определенный режим работы, например заданный производителем (язык интерфейса, время, значения настроек). Для этого в данном приборе существует специализированное меню которое имеет 6 независимых функциональных кнопок расположенных в верхней части настроечного блока в два ряда.

Верхний ряд имеет клавиши: 

  • Курсоры
  • Сбор информации
  • Зап. вызов

Верхний ряд кнопок меню

Верхний ряд кнопок меню 

Нижний ряд имеет клавиши: 

  • Измерение 
  • Дисплей
  • Утилиты

Нижний ряд кнопок меню

Нижний ряд кнопок меню

Слева от данного меню находится регулятор “УСТАНОВКА”, который необходим для настройки необходимых параметров прибора в соответствующем МЕНЮ.

image9

При нажатии кнопки “Утилиты” в правой части экрана прибора появляется 4-х страничное меню. Самая верхняя клавиша “Меню вкл/выкл” может удалять при нажатии на нее меню с экрана прибора. В нижней части блока кнопок расположенных на панели экрана, расположена кнопка “Печать”. При помощи которой можно записать данные с экрана осциллографа на флеш носитель. 

При повторном нажатии на клавишу “Меню вкл/выкл” меню снова появляется на экране. 4-х страничное меню, можно переключать нажимая пятую клавишу сверху. 

Кнопка Меню ВКЛ/ВЫКЛ

Кнопка Меню ВКЛ/ВЫКЛ

При выборе первой страницы меню, клавишей “1” можно включить подменю “СТАТУС”, при этом на экране осциллографа появляется информация о статусе прибора. Выход из этого подменю осуществляется нажатием клавиши “Однократно”.

Статус прибора

Статус прибора

Клавиша подменю “2” управляет отключением и включением звукового сигнала.

Клавиша “3” выводит на экран частоту измеряемого сигнала.

Кнопка “4” позволяет выбрать язык интерфейса. 

При нажатии клавиши “5” включается вторая страница подменю. В этой вкладке, нажимая на кнопку “1” выполняется самокалибровка. 

В режиме Самокалибровки необходимо отключить от прибора все пробники и кабели. Затем нажать кнопку “Однократно”, при этом появляется шкала зеленого цвета, которая заполняется. После завершения Самокалибровки нажать кнопку “Однократно”. Для выхода из режима Самокалибровки необходимо нажать клавишу “ПУСК/СТОП”.

Кнопка Однократно

Кнопка Однократно

Режим “Самотестирования”. При нажатии клавиши “2” открывается подменю соответствующее кнопкам:

  • 1 – Тест экрана (Screen Test). При нажатии этой клавиши, экран становится красным. Дальнейшее нажатие кнопки “Однократно”, цвет экрана может меняться на зеленый и синий. Эта функция помогает контролировать наличие основных цветов RGB (красный, зеленый, синий). Выход из данного меню осуществляется нажатием кнопки “ПУСК/СТОП”
  • 2 – Тест клавиатуры (Keyboard Test). При нажатии этой клавиши можно протестировать работу всех клавиш. При этом на экране соответствующая кнопка будет менять цвет на зеленый. Что говорит о исправности клавиш.
  • 3 – Тест Свд (LED Test). Проверка работоспособности подсветки кнопок. 

Выход из данного подменю осуществляется нажатием кнопки “Утилиты”.

Утилиты

Утилиты

Страница 3 подменю. Соответствие кнопок настройкам:

  • 1 – Обновление ПО
  • 2 – “Доп/Контр” использование дополнительных настроек
  • 3 – “Запись” – записывает данные на нужный носитель, в соответствии с выбранным подменю
  • 4 – “Установки порта”

Страница 4 подменю. Соответствие кнопок настройкам:

  • 1 – Режим сохранения долговечности светодиодов
  • 2 – Регистратор

Дисплей” – клавиша основного меню 

При нажатии этой кнопки высвечиваются следующие пункты подменю:

  • 1 – “Вектор”
  • 2 – “Послесвечение”
  • 3 – “Яркость луча”
  • 4 – “Яркость сетки”

При нажатии клавиши “1” мы можем видеть линию осциллографа либо в виде точек, либо в виде прямой линии (вектор).

При нажатии клавиши “2” выбираем длительность свечения экрана после проведения измерения. От 1 секунды до бесконечности.

При нажатии клавиши “3” – мы можем регулировать яркость свечения луча при помощи ручки регулятора “Установка”.

При нажатии клавиши “4” мы можем регулировать яркость координационной сетки, для удобства пользования.

Выход из этого меню осуществляется нажатием клавиши “Утилиты”

Измерения” – клавиша основного меню

При нажатии этой кнопки открывается пять видов подменю:

  • 1 – Напряжение. Выбор источника канала. Выбор типа измерения напряжения.
  • 2 –  Время. Также выбор источника канала и тип длительности (частота)
  • 3 – Задержка. 
  • 4 – Все измерения. Канал, напряжение и время. Сразу три характеристики одновременно отображаются на экране. 
  • 5 – Удалить измерения.

Курсоры” – клавиша основного меню

Устанавливает линии ограничения измерений по амплитуде и по частоте

Сбор информации” – клавиша основного меню

Используется режим выборки

Зап/Выз” – клавиша основного меню

Переводит режим осциллографа при нажатии первой клавиши к заводским настройкам.

Начальные установки” переводит осциллограф к начальным установкам пользователя

Помощь” – нажатие на эту кнопку вызывает справочное меню. Перемещение осуществляется с использованием кнопок 1-5.

Пуск/Стоп” – применяется для остановки исследуемого сигнала. Чтобы измерить его длительность и амплитуду.

АВТО” – автоматически находит исследуемый сигнал подаваемый на щупы осциллографа, для его дальнейшего исследования.

Регулятор управления вертикальной разверткой первого канала (желтого цвета) предназначен для выбора оптимальной величины амплитуды, для исследования сигнала.

Регулятор “Смещение” луча в вертикальном направлении

Что измеряет осциллограф

Для полноценной диагностики электронного устройства применяется Oscilloscope.

При помощи осциллографа можно измерить следующие параметры:

  1. Максимальную амплитуду любого сигнала
  2. Посмотреть эпюру напряжения и тока 
  3. Измерить частоту сигнала
  4. Просмотреть фазу сигнала
  5. Измерить постоянное напряжение 

Амплитуда сигнала есть максимальное значение которое выдается генератором при его работе. Если производить измерения мультиметром, то мы видим действующее значение тока или напряжения. Что зачастую бывает не достаточно при проектировании или ремонте электронных устройств. Поэтому в данном случае целесообразно применить мультиметр который измеряет максимальные амплитудные значения. Часто для этих целей применяется осциллограф. Например при рассмотрении синусоидального напряжения электрической сети через понижающий трансформатор на выходе диодного моста без сглаживающего конденсатора фильтра.

Амплитуда сигнала

Амплитуда сигнала

Эпюра напряжения или тока – это осциллограмма, то есть изображение на экране осциллографа, поданного на вход прибора любого исследуемого электрического сигнала. Измерения можно проводить в любой интересующей нас контрольной точке и сравнить ее с данными производителя.

Эпюра синусоидального напряжения сети

Эпюра синусоидального напряжения сети

Частота сигнала – значение исследуемого сигнала во временном диапазоне по оси Х осциллографа. Так как данный сигнал измеряется по времени (сек, миллисекунд, микросекунд), то частота величина обратная времени. Поэтому для нахождения частоты необходимо применить формулу: 

f = 1/T 

где f – частота, в Гц (Hz)

T – время, в сек (S)

Частота сигнала формы Меандр

Частота сигнала формы Меандр

Фаза сигнала – измеряется при помощи двух каналов. На один вход подается один исследуемый сигнал, на второй вход подается другой сигнал на этой же частоте. Сдвиг сигналов на экране прибора по времени и есть фаза.

Измерение постоянного напряжения. При помощи прибора можно измерять не только амплитудное переменное значение, но и постоянную составляющую напряжения.

Осциллограф без сигнала на входе

Осциллограф без сигнала на входе

Измерение напряжение источника постоянного тока. На фото заметно поднятие горизонтальной полосы вверх относительно первоначального значения. Согласно координационной сетки Вольт/деление по оси Y можно рассчитать фактическое напряжение на выходе источника питания 

Измерение постоянного напряжения

Измерение постоянного напряжения

Как работает осциллограф

Последовательность работы с осциллографом:

  1. Включить Oscilloscope в электрическую сеть. 
  2. Согласно инструкции выбрать соответствующие настройки в пунктах меню (язык, время, и т.д.).
  3. Произвести калибровку прибора.
  4. Подключить высокочастотные измерительные провода BNC к соответствующим разъемам, в соответствии с маркировкой.
  5. Начать проводить измерения, присоединив щуп к исследуемой точке на электронной плате. 
  6. Если исследуемый сигнал не отображается на экране осциллографа в ручном режиме, необходимо нажать кнопку “АВТО”. При этом прибор покажет исследуемый сигнал.
  7. В случае когда эпюра сигнала не помещается на экране, ее необходимо удержать кнопкой “ПУСК/СТОП”, затем регуляторами вертикального и горизонтального усиления довести картинку до оптимального отображения.
  8. Во время проведения работ с осциллографом, соблюдайте технику безопасности. Особенно это касается при ремонте горячей части импульсного блока питания, привязанной к электрической сети. В этом случае, для полной безопасности лучше использовать разделительный трансформатор.

Как пользоваться осциллографом

Перед тем как начать пользоваться Oscilloscope, важно определиться какой сигнал предварительно может в данной точке измеряться прибором по амплитуде. Это необходимо в целях исключения поломки прибора. Согласно инструкции установить на приборе максимальное значение напряжения В/Деление по развертке Y. А по развертке X ожидаемую частоту сигнала. 

Только после этого подключаем прибор к соответствующей контрольной точке для измерений. Затем проанализировать появившуюся эпюру напряжения. Для удобства отсчета существуют ручки смещения: 

  • по оси координат Y – вертикальное отклонение
  • по оси Х – горизонтальное отклонение

При помощи этих регуляторов сместить полученное изображение к началу координат, для удобства отсчета. По осям Ординат и Абсцисс (Y,Х) существует координатная сетка. Она привязана к соответствующим условным значениям. По выбранным значениям можно посчитать полученное значение напряжение в вольтах и время в секундах. Для нахождения частоты, необходимо перевести время в частоту, по формуле f = 1/T.

Измерение сигнала с ШИМ-контроллера (видео)

Для примера возьмем плату от рабочего телевизора и посмотрим выходные импульсы с ШИМ-контроллера в различных режимах работы:

  • в дежурном режиме – когда телевизор включен в сеть, до нажатия на кнопки включения
  • в рабочем режиме – после нажатия на кнопку включения (или что то же самое под нагрузкой)

Удобно применять осциллограф, для исследования электрической схемы в случае, когда ШИМ-контроллер был бы не исправен. При присутствии питания на ШИМ-контроллере выходных импульсов не было бы. А присутствовало бы какое-нибудь напряжение. А это в свою очередь говорит о неисправности самого ШИМ-контроллера или его цепей.

Выводы

  • Научиться применять осциллограф необходимо каждому электронщику и начинающему радиолюбителю, занимающемуся разработкой, производством, настройкой, диагностикой и ремонтом электронных устройств.
  • Важно уметь анализировать полученные результаты, основываясь на понимании  работы электронных компонентов.
  • Осциллограф является сложным устройством, но научится им пользоваться не составляет особого труда.

Итак, осциллограф ( лат качаюсь + греч пишу ) это по сути простой вольтметр, который помимо обычного измерения позволяет исследовать сигналы любых частот и напряжений.

Существует два вида осциллографоф — аналоговый и цифровой. В этой статье мы рассмотрим первый вид на примере осциллографа С1-55. Для начала изучим его «интерефейс»

Т.к. у меня двух лучевой осциллограф то некоторые ручки не помечены, но по сути делают одно и тоже.

Настройки луча
1 ручка отвечает за яркость луча, иногда очень полезная вещь, т.к. луч меркнет при работе на больших частотах.
2 ручка это фокус, толщина луча, чем луч тоньше тем лучше.
3 ручка регулирует астигматизм настройка луча, тоже связаная с фокусом.
Настройка оси Y
4 переключатель изменяет вход осциллографа ( открытый или закрытый ) проще говоря срезает постоянную составляющую или нет.
5 усилитель для оси Y, служит для «масштабирования в оси Y»
6 сдвиг по оси Y
7 вход
На фотографии левая часть для первого луча, правая для второго.

Синхронизация

8 Вход для внешней синхрониции ( 1 вход напрямую, второй с делителем частоты на 10 )
9 Настройки для сигнала внешней синхронизации
10 Выбор режима и точная подгонка синхронизации.
11 Очень точная синхронизация.
12 Заземление (на фото не отмечено, рядом с 11)
Калибратор
13 Главная ручка управления, определяющая напряжение калибратора
14 Выход калибратора
15 Выбор режима ( постоянное напряжение, или 2 kHz сигнал )
Настройка оси X
16 Выход пилообразного сигнала развертки.
17 Грубый и плавный сдвиг по оси X.
18 Ручка «масшабирования по X»
19 Умножитель масштаба

20 Включение и индикатор состояния.

Провода

Одной из важнейших составляющих осциллографа являются «щупы» и провода идущие к ним.
При работе на малых частотах небольшие помехи незаметны и можно использовать что угодно.
Но при частоте больше 20 kHz лучше пользоватся специализироваными щупами.
Провод для щупа

Все это вместе называется Коаксиальный кабель. Ссылка на вики

Итак, с теорией ознакомились, перейдем к практике!

Практика
На калибраторе

Самое простое что можно посмотреть и измерить на осциллографе — это сигнал со встроенного калибратора ( есть не на всех приборах )

Вот как выглядит сигнал 2 kHz ( Второй луч выключен )

Я мог бы показать как выглядит второй режим калибратора — постоянка, но от самой первой фоторгафии отличатся будет очень мало, поэтому переходим дальше.

С компьютера

На компьютер есть много софта, не буду выделять конкретных программ, ибо делают все одно и тоже, просто выглядят по разнаму. С звуковой карты компьютера без особых приспособлений можно выдать сигнал до 20 kHz, то есть в слышимом диапозоне. Из за того что звуковая карта заточена под звук ( звуковая под звук ), есть некоторые особенности в сигнале. Наглядный пример синусоида 1 kHz и 20 kHz


На фотографии видно, что синусоида слегка квадратная ( звук то битный )

Теперь 5 kHz

Здесь «битность» видно особенно хорошо.
Теперь квадратный сигнал ( аналогичный сигналу калибратора, но на частоте 1 kHz )

И импульсы тоже 1 Khz

P.S. Извиняюсь за качество фоток и разметки.
Спасибо за внимание

Понравилась статья? Поделить с друзьями:

А вот и еще наши интересные статьи:

  • Хондромед плюс инструкция по применению порошок цена
  • Бензопила лесник 3816 инструкция по эксплуатации
  • Поиск руководства пользователя
  • Форум руководство для пользователя
  • Яндекс афиша руководство

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии